We propose a novel framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that J = T P (I), where T P is the immediate consequence operator, we infer the program P. The learning framework can be repeatedly applied for identifying Boolean networks from basins of attraction. Two algorithms have been implemented for this learning task, and are compared using examples from the biological literature. We also show how to incorporate background knowledge and inductive biases, then apply the framework to learning transition rules of cellular automata.
In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that J = TP (I), where TP is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.