Abstract-Violent lone offenders such as school shooters and lone actor terrorists pose a threat to the modern society but since they act alone or with minimal help form others they are very difficult to detect. Previous research has shown that violent lone offenders show signs of certain psychological warning behaviors that can be viewed as indicators of an increasing or accelerating risk of committing targeted violence. In this work, we use a machine learning approach to identify potential violent lone offenders based on their written communication. The aim of this work is to capture psychological warning behaviors in written text and identify texts written by violent lone offenders. We use a set of features that are psychologically meaningful based on the different categories in the text analysis tool Linguistic Inquiry and Word Count (LIWC). Our study only contains a small number of known perpetrators and their written communication but the results are promising and there are many interesting directions for future work in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.