Artermisinin and its derivatives are now the mainstays of antimalarial treatment; however, their mechanism of action is only poorly understood. We report on the synthesis of a novel series of epoxy-endoperoxides that can be prepared in high yields from simple starting materials. Endoperoxides that are disubstituted with alkyl or benzyl side chains show efficient inhibition of the growth of both chloroquine-sensitive and -resistant strains of Plasmodium falciparum. A trans-epoxide with respect to the peroxide linkage increases the activity compared to that of its cis-epoxy counterpart or the parent endoperoxide. The novel endoperoxides do not show a strong interaction with artemisinin. We have compared the mechanism of action of the novel endoperoxides with that of artemisinin. Electron microscopy reveals that the novel endoperoxides cause the early accumulation of endocytic vesicles, while artemisinin causes the disruption of the digestive vacuole membrane. At longer incubation times artemisinin causes extensive loss of organellar structures, while the novel endoperoxides cause myelin body formation as well as the accumulation of endocytic vesicles. An early event following endoperoxide treatment is the redistribution of the pH-sensitive probe LysoSensor Blue from the digestive vacuole to punctate structures. By contrast, neither artemisinin nor the novel endoperoxides caused alterations in the morphology of the endoplasmic reticulum nor showed antagonistic antimalarial activity when they were used with thapsigargin. Analysis of rhodamine 123 uptake by P. falciparum suggests that disruption of the mitochondrial membrane potential occurs as a downstream effect rather than as an initiator of parasite killing. The data suggest that the digestive vacuole is an important initial site of endoperoxide antimalarial activity.Artemisinin is a sesquiterpene lactone antimalarial with a 1,2,4-trioxane heterocyclic core that incorporates a peroxide linkage that is essential for its activity (44). Artemisinin is of major importance as a frontline treatment for malaria, particularly as it is active against chloroquine (CQ)-resistant strains of Plasmodium falciparum (20,23,24,45,66,74). Several groups have reported on pathways for the synthesis of artemisinin, but all require numerous steps and have low yields (5, 35). As a result, artemisinin-based antimalarials are produced semisynthetically from extracts of Artemisia annua. A period of over 1 year is needed for the horticultural, harvesting, extraction, and manufacturing processes (34,41,45), which limits the ease of scale-up of production and makes artemisinin derivatives much more expensive than traditional antimalarials, such as CQ and sulfadoxine-pyrimethamine. Indeed, artemisinin combinations are too costly for many patients, and the supply of counterfeit or inferior drugs is a major problem (4, 45, 71). Another issue is the fact that artemisinin and its derivatives are not suitable for prophylaxis or for use as a monotherapy due to their very short half-lives in vivo. T...
A series of 3,6-substituted 3,6-dihydro-1,2-dioxines were dihydroxylated with osmium tetroxide to furnish 1,2-dioxane-4,5-diols (peroxy diols) in yields ranging from 33% to 98% and with de values not less than 90%. The peroxy diols were then reduced to generate a stereospecific tetraol core with R,R,S,S or "allitol" stereochemistry. The peroxy diols and their acetonide derivatives were also ring-opened with Co(II) salen complexes to give novel hydroxy ketones in 77-100% yield, including the natural sugar psicose. Importantly, preliminary work on the catalytic asymmetric ring-opening of meso-peroxy diols using the Co(II) Jacobsens's catalyst indicates that asymmetric sugar synthesis from 1,2-dioxines is possible.
The synthesis of 2-C-branched erythritol derivatives, including the plant sugar (+/-)-2-C-methylerythritol 2, was achieved through a dihydroxylation/reduction sequence on a series of 4-substituted 1,2-dioxines 3. The asymmetric dihydroxylation of 1,2-dioxines was examined, providing access to optically enriched dihydroxy 1,2-dioxanes 4. The synthesized 1,2-dioxanes were converted to other erythro sugar analogues and tetrahydrofurans through controlled cleavage of the endoperoxide linkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.