High-oligomeric and low-total-α-synuclein cerebrospinal fluid (CSF) levels have been found in Parkinson's disease (PD), but with inconsistent or limited data, particularly on their clinical and structural correlates in earliest (premotor) or latest (dementia) PD stages. We determined CSF oligomeric- and total-α-synuclein in 77 subjects: 23 with idiopathic REM-sleep behaviour disorder (iRBD, a condition likely to include a remarkable proportion of subjects in the premotor stage of PD) and 41 with PD [21 non-demented (PDND) + 20 demented (PDD)], intended to reflect the premotor-motor-dementia PD continuum, along with 13 healthy controls. The study protocol also included the Unified PD Rating Scale motor-section (UPDRS-III), mini mental state examination (MMSE), neuropsychological cognitive testing, 3T brain MRI for cortical-thickness analyses, CSF τ and CSF Aβ. CSF oligomeric-α-synuclein was higher in PDND than iRBD and in PDD than iRBD and controls, and correlated with UPDRS-III, MMSE, semantic fluency and visuo-perceptive scores across the proposed premotor-motor-dementia PD continuum (iRBD + PDND + PDD). CSF total-α-synuclein positively correlated with age, CSF Aβ, and, particularly, CSF τ, tending towards lower levels in PD (but not iRBD) vs. controls only when controlling for CSF τ. Low CSF total-α-synuclein was associated with dysfunction in phonetic-fluency (a frontal-lobe function) in PD and with frontal cortical thinning in iRBD and PDND independently of CSF τ. Conversely, the associations of high (instead of low) CSF total-α-synuclein with posterior-cortical neuropsychological deficits in PD and with posterior cortical thinning in PDD were driven by high CSF τ. These findings suggest that CSF oligomeric- and total-α-synuclein have different clinical, neuropsychological and MRI correlates across the proposed premotor-motor-dementia PD continuum. CSF total-α-synuclein correlations with CSF τ and Aβ support the hypothesis of an interaction among these proteins in PD, with CSF τ probably influencing the presence of high (instead of low) CSF total-α-synuclein and its correlates mostly in the setting of PD-related dementia.
At present it is widely accepted that there are at least two neurogenic sites in the adult mammalian brain: the subventricular zone (SVZ) of lateral ventricles and the subgranular zone (SGZ) of the hippocampus dentate gyrus. The adult proliferation rate declines with aging and is altered in several neurodegenerative pathologies including Alzheimer's disease. The aim of this work was to study whether a natural diet rich in polyphenols and polyunsaturated fatty acids (LMN diet) can modulate neurogenesis in adult mice and give insight into putative mechanisms. Results with BrdU and PCNA demonstrated that the LMN fed mice had more newly generated cells in the SVZ and SGZ, and those with DCX (undifferentiated neurons) and tyrosine hydroxylase, calretinin, and calbindin (differentiated neurons) immunostainings and western blots demonstrated a significant effect on neuronal populations, strongly supporting a positive role of the LMN diet on adult neurogenesis. In primary rat neuron cultures, the LMN cream dramatically protected against damage caused by both hydrogen peroxide and Abeta(1-42), demonstrating a potent antioxidant effect that could play a major role in the normal adult neurogenesis and, moreover, the LMN diet could have a significant effect combating the cognitive function decline during both aging and neurodegenerative diseases such as Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.