The Diet Coke and Mentos reaction is a fun demonstration in chemistry and physics classes of many important concepts in thermodynamics, fluid dynamics, surface science, and the physics of explosions. The reaction has been performed numerous times on television and the Internet, but has not been systematically studied. We report on an experimental study of the Diet Coke and Mentos reaction, and consider many aspects of the reaction, including the ingredients in the candy and soda, the roughness of the candy, the temperature of the soda, and the duration of the reaction.
We report a quartz crystal microbalance (QCM) study of sliding friction for solid xenon monolayers at 77 K on Cu(111), Ni(111), graphene/Ni(111), and C(60) substrates. Simulations have predicted a strong dependence of phononic friction coefficient (eta) on surface corrugation in systems with similar lattice spacing, eta approximately U(2)(0), but this has never before been shown experimentally. In order to make direct comparisons with theory, substrates with similar lattice spacing but varying amplitudes of surface corrugation were studied. QCM data reveal friction levels proportional to U(2)(0), validating current theoretical and numerical predictions. Measurements of Xe/C(60) are also included for comparison purposes.
Inspired by suggestions of C(60) "nanobearings," we have measured sliding friction on fixed and rotating C(60) layers to explore whether a lubricating effect is present. We refer to this general phenomenon as "nanomapping," whereby macroscopic attributes are mapped in a one on one fashion to nanoscale entities. Our measurements are the first to directly link friction to a documented molecular rotation state. Friction is, however, observed to be higher for rotating layers, in defiance of the ball-bearing analogy. Thus, no direct mapping of macro- to nanoscale attributes can be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.