Animals often gather information from other species by eavesdropping on signals intended for others. We review the extent, benefits, mechanisms, and ecological and evolutionary consequences of eavesdropping on other species' alarm calls. Eavesdropping has been shown experimentally in about 70 vertebrate species, and can entail closely or distantly related species. The benefits of eavesdropping include prompting immediate anti-predator responses, indirect enhancement of foraging or changed habitat use, and learning about predators. Eavesdropping on heterospecifics can provide more eyes looking for danger, complementary information to that from conspecifics, and potentially information at reduced cost. The response to heterospecific calls can be unlearned or learned. Unlearned responses occur when heterospecific calls have acoustic features similar to that used to recognize conspecific calls, or acoustic properties such as harsh sounds that prompt attention and may allow recognition or facilitate learning. Learning to recognize heterospecific alarm calls is probably essential to allow recognition of the diversity of alarm calls, but the evidence is largely indirect. The value of eavesdropping on different species is affected by problems of signal interception and the relevance of heterospecific alarm calls to the listener. These constraints on eavesdropping will affect how information flows among species and thus affect community function. Some species are 'keystone' information producers, while others largely seek information, and these differences probably affect the formation and function of mixed-species groups. Eavesdroppers might also integrate alarm calls from multiple species to extract relevant and reliable information. Eavesdropping appears to set the stage for the evolution of interspecific deception and communication, and potentially affects communication within species. Overall, we now know that eavesdropping on heterospecific alarm calls is an important source of information for many species across the globe, and there are ample opportunities for research on mechanisms, fitness consequences and implications for community function and signalling evolution.
Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.
Public data archiving has many benefits for society, but some scientists are reluctant to share their data. This Perspective offers some practical solutions to reduce costs and increase benefits for individual researchers.
Many vertebrates gain critical information about danger by eavesdropping on other species' alarm calls [1], providing an excellent context in which to study information flow among species in animal communities [2-4]. A fundamental but unresolved question is how individuals recognize other species' alarm calls. Although individuals respond to heterospecific calls that are acoustically similar to their own, alarms vary greatly among species, and eavesdropping probably also requires learning [1]. Surprisingly, however, we lack studies demonstrating such learning. Here, we show experimentally that individual wild superb fairy-wrens, Malurus cyaneus, can learn to recognize previously unfamiliar alarm calls. We trained individuals by broadcasting unfamiliar sounds while simultaneously presenting gliding predatory birds. Fairy-wrens in the experiment originally ignored these sounds, but most fled in response to the sounds after two days' training. The learned response was not due to increased responsiveness in general or to sensitization following repeated exposure and was independent of sound structure. Learning can therefore help explain the taxonomic diversity of eavesdropping and the refining of behavior to suit the local community. In combination with previous work on unfamiliar predator recognition (e.g., [5]), our results imply rapid spread of anti-predator behavior within wild populations and suggest methods for training captive-bred animals before release into the wild [6]. A remaining challenge is to assess the importance and consequences of direct association of unfamiliar sounds with predators, compared with social learning-such as associating unfamiliar sounds with conspecific alarms.
Begging by nestling birds has been used to test evolutionary models of signalling but theory has outstripped evidence. Eavesdropping predators potentially impose a cost on begging that ensures signal honesty, yet little experimental evidence exists for such a cost at active nests because the use of artificial nests, long playback bouts and absence of parents may have exaggerated costs. We broadcast short periods (1 h) of either nestling vocalizations or background noise at active white-browed scrubwren, Sericornis frontalis , nests. Nestlings called naturally during both treatments, allowing us to test whether elevated calling increases risk, a key but rarely tested assumption of evolutionary models. Predators visited nests exclusively during periods of elevated calling. Furthermore, playbacks affected neither adult visits nor nestling activity, suggesting that calling alone attracted predators. Adults gave alarm calls and nestlings usually called less when predators approached nests. Predation risk to broods is, therefore, likely to fluctuate substantially over short periods of time, depending on nestling hunger and whether adults or young have detected predators. This study confirms a present-day cost of nestling begging, demonstrates that this cost can be incurred over short periods and supports the importance of parent–offspring antipredator strategies in reducing predation risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.