BackgroundPrader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses.MethodsHigh resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite.ResultsBoth children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD.ConclusionsChildren with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.
Background and purpose
Silent cerebral infarcts (SCIs) are the most common neurological complication in children and adults with sickle cell disease (SCD). In this systematic review, we provide an overview of studies that have detected SCIs in patients with SCD by cerebral magnetic resonance imaging (MRI). We focus on the frequency of SCIs, the risk factors involved in their development and their clinical consequences.
Methods
The databases of Embase, MEDLINE ALL via Ovid, Web of Science Core Collection, Cochrane Central Register of Trials via Wiley and Google Scholar were searched from inception to June 1, 2019.
Results
The search yielded 651 results of which 69 studies met the eligibility criteria. The prevalence of SCIs in patients with SCD ranges from 5.6 to 80.6% with most studies reported in the 20 to 50% range. The pooled prevalence of SCIs in HbSS and HbSβ0 SCD patients is 29.5%. SCIs occur more often in patients with the HbSS and HbSβ0 genotype in comparison with other SCD genotypes, as SCIs are found in 9.2% of HbSC and HbSβ+ patients. Control subjects showed a mean pooled prevalence of SCIs of 9.8%. Data from included studies showed a statistically significant association between increasing mean age of the study population and mean SCI prevalence. Thirty-three studies examined the risk factors for SCIs. The majority of the risk factors show no clear association with prevalence, since more or less equal numbers of studies give evidence for and against the causal association.
Conclusions
This systematic review and meta-analysis shows SCIs are common in patients with SCD. No clear risk factors for their development were identified. Larger, prospective and controlled clinical, neuropsychological and neuroimaging studies are needed to understand how SCD and SCIs affect cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.