Zebrafish have become a useful model for studying behavior and cognitive functions. Recent studies have shown that zebrafish have natural color preference and the ability to form associative memories with visual perception. It is well known that visual perception enhances memory recall in humans, and we suggest that a similar phenomenon occurs in zebrafish. This study proposes that adding a visual perception component to a conventional reward method would enhance memory recall in zebrafish. We found that zebrafish showed greater preference for red cellophane over yellow in the training session but could not remember the preferred place in the memory test. However, the test memory recall was greater when the zebrafish were exposed to the red cellophane with a food reward during the training session, when compared with the use of food reward only. Furthermore, the red cellophane with food reward group showed more predictable memory recall than the food reward only group. These results propose that visual perception can increase memory recall by enhancing the consolidation processes. We suggest that color-cued learning with food reward is a more discriminative method than food reward alone for examining the cognitive changes in the zebrafish.
CES pretreatment appears to reduce the level of preoperative anxiety, injection pain of rocuronium and postoperative pain. However, CES pretreatment did not affect stress hormone responses.
Chronic pressure overload in the absence of LV systolic dysfunction resulted in LA hypertrophy and increased susceptibility to AF, which might be related to conduction abnormality via decreased expression and lateral distribution of Cx43 as well as interstitial fibrosis.
Although the number of vascular surgeries using vascular grafts is increasing, they are limited by vascular graft-related complications and size discrepancy. Current efforts to develop the ideal synthetic vascular graft for clinical application using tissue engineering or 3D printing are far from satisfactory. Therefore, we aimed to re-design the vascular graft with modified materials and 3D printing techniques and also demonstrated the improved applications of our new vascular graft clinically. We designed the 3D printed polyvinyl alcohol (PVA) templates according to the vessel size and shape, and these were dip-coated with salt-suspended thermoplastic polyurethane (TPU). Next, the core template was removed to obtain a customized porous TPU graft. The mechanical testing and cytotoxicity studies of the new synthetic 3D templated vascular grafts (3DT) were more appropriate compared with commercially available polytetrafluoroethylene (PTFE) grafts (ePTFE; standard graft, SG) for clinical use. Finally, we performed implantation of the 3DTs and SGs into the rat abdominal aorta as a patch technique. Four groups of the animal model (SG_7 days, SG_30 days, 3DT_7 days, and 3DT_30 days) were enrolled in this study. The abdominal aorta was surgically opened and sutured with SG or 3DT with 8/0 Prolene. The degree of endothelial cell activation, neovascularization, thrombus formation, calcification, inflammatory infiltrates, and fibrosis were analyzed histopathologically. There was significantly decreased thrombogenesis in the group treated with the 3DT for 30 days compared with the group treated with the SG for 7 and 30 days, and the 3DT for 7 days. In addition, the group treated with the 3DT for 30 days may also have shown increased postoperative endothelialization in the early stages. In conclusion, this study suggests the possibility of using the 3DT as an SG substitute in vascular surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.