Bioacoustics plays an important role in the conservation of bird species. Bio-acoustic surveys based on autonomous audio recording are both cost-effective and time-efficient. However, there are many bird species with different patterns of vocalization, and it is a challenging task to deal with them. Previous studies have revealed that many authors focus on the segmentation of bird audio without considering specific patterns of bird vocalization. Based on the existing literature, currently there is no work on the segmentation of monosyllabic and multisyllabic birds, separately. Therefore, this research addresses the aforementioned concern and also proposes a collection of audio features named ‘Perceptual, Descriptive, and Harmonic Features (PDHFs)’ that gives promising results in the classification of bird vocalization. Moreover, the classification results improved when monosyllabic and multisyllabic birds were classified separately. To analyze the performance of PDHFs, different classifiers were used in which Artificial neural network (ANN) outperformed other classifiers and demonstrated an accuracy of 98%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.