In this study, isolated spermatogonial stem cells (SSCs) and Sertoli cells using enzymatic digestion from patients with maturation arrest of spermatogenesis were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% foetal calf serum in three different groups: (1) SSCs cultured without Sertoli cells (2) SSCs co-cultured with Sertoli cells (as control group), (3) SSCs co-cultured with Sertoli cells and adding different concentrations of basic fibroblast growth factor (0.1, 1, 10 ng ml(-1)) and human leukaemia inhibitory factor (1000, 1200, 1500 unit ml(-1)) as experimental groups. The assessment of colonies every 10 days during 5-week cultures showed that in the first group, the average number and diameter of the colonies were significantly lower than in the other groups (P < 0.05). The largest number of colonies was observed in control condition (32.29 ± 9.15) in day 30. The largest diameter of colonies was formed in combination dosages of 1 ng ml(-1) basic fibroblast growth factor (bFGF) + 1500 unit ml(-1) leukaemia inhibitory factor (LIF) (302.93 ± 37.68) and 10 ng ml(-1) bFGF and 1200 unit ml(-1) LIF (262.87 ± 35.54) in day 30 respectively. Isolated SSCs were positive for spermatogonial cell markers such as Oct4, Stra8, Piwil2 and Vasa but negative for Nanog. Transplantation technique indicated that hSSCs have good efficiency for colonisation of mouse seminiferous tubules after proliferation in culture system.
The purpose of this study was (i) To establish in vitro propagation of human spermatogonial stem cells (hSSCs) from small testicular biopsies to obtain a high number of cells; (ii) to evaluate the presence of functional hSSCs in culture system by RT-PCR using DAZL, α6-Integrin, β1-Integrin genes; and (iii) to evaluate the effects of cell concentration on successful xenotransplantation of hSSCs in mice testis. Donor hSSCs were obtained from men with maturation arrest of spermatogenesis duration 1 year ago. These cells were propagated in DMEM containing 1 ng ml(-1) bFGF (basic fibroblast grow factor) and 1500 U ml LIF (leucaemia inhibitory factor) for 5 weeks. Different concentrations of hSSCs transplanted into seminiferous tubules of busulfan-treated immunodeficient mice and analysed up to 8 weeks after transplantation. The results showed that expression of DAZL and α6-Integrin mRNA was increased as well as the colony formation of SSCs in vtro culture during 5 weeks. Proliferation occurred about 4 weeks after transplantation, but meiotic differentiation was not observed in recipient testis after 8 weeks. The difference in donor cells concentration had effect on homing spermatogenesis in recipient testis. Homologous transplantation of proliferated SSCs to seminiferous tubules of that patient individually may allow successful differentiation of transplanted cells.
The aim of this research was to find a way to differentiate germ cells from umbilical cord Wharton's jelly mesenchymal stem cells (MSCs) to support in vitro spermatogenesis. A small piece of Wharton's jelly was cultured in high-glucose Dulbecco's modified Eagle's medium in present of 10% foetal calf serum. After the fourth passage, the cells were isolated and cultured in Sertoli cell-conditioned medium under induction of two different doses of retinoic acid (10 , 10 m). The differentiation of MSC to germ-like cells was evaluated by expression of Oct4, Nanog, Plzf, Stra8 and Prm1 genes during different days of culture through qPCR. The results showed that there were downregulation of Oct4 and Nanog and upregulation of pre-meiotic germ cell marker (stra8) and haploid cell marker (Prm1) when MSCs are differentiated over time. The expression of Bax gene (an apoptotic marker) was significantly observed in high dosage of retinoic acid (RA). As a result, RA has positive effects on proliferation and differentiation of MSCs, but its effects are related to dosage. The success of this method can introduce umbilical cord MSC as a source of germ cells for treatment of infertility in future.
Introduction A 3D-nanofiber scaffold acts in a similar way to the extracellular matrix (ECM)/basement membrane that enhances the proliferation and self-renewal of stem cells. The goal of the present study was to investigate the effects of a poly L-lactic acid (PLLA) nanofiber scaffold on frozen-thawed neonate mouse spermatogonial stem cells (SSCs) and testis tissues. Methods The isolated spermatogonial cells were divided into six culture groups: (1) fresh spermatogonial cells, (2) fresh spermatogonial cells seeded onto PLLA, (3) frozen-thawed spermatogonial cells, (4) frozen-thawed spermatogonial cells seeded onto PLLA, (5) spermatogonial cells obtained from frozen-thawed testis tissue, and (6) spermatogonial cells obtained from frozen-thawed testis tissue seeded onto PLLA. Spermatogonial cells and testis fragments were cryopreserved and cultured for 3 weeks. Cluster assay was performed during the culture. The presence of spermatogonial cells in the culture was determined by a reverse transcriptase polymerase chain reaction for spermatogonial markers ( Oct4, GFRα-1, PLZF, Mvh(VASA), Itgα6 , and Itgβ1 ), as well as the ultrastructural study of cell clusters and SSCs transplantation to a recipient azoospermic mouse. The significance of the data was analyzed using the repeated measures and analysis of variance. Results The findings indicated that the spermatogonial cells seeded on PLLA significantly increased in vitro spermatogonial cell cluster formations in comparison with the control groups (culture of SSCs not seeded on PLLA) ( P ≤0.001). The viability rate for the frozen cells after thawing was 63.00% ± 3.56%. This number decreased significantly (40.00% ± 0.82%) in spermatogonial cells obtained from the frozen-thawed testis tissue. Both groups, however, showed in vitro cluster formation. Although the expression of spermatogonial markers was maintained after 3 weeks of culture, there was a significant downregulation for some spermatogonial genes in the experimental groups compared with those of the control groups. Furthermore, transplantation assay and transmission electron microscopy studies suggested the presence of SSCs among the cultured cells. Conclusion Although PLLA can increase the in vitro cluster formation of neonate fresh and frozen-thawed spermatogonial cells, it may also cause them to differentiate during cultivation. The study therefore has implications for SSCs proliferation and germ cell differentiation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.