Recently, two methods have been proposed for regional cerebral blood flow (rCBF) quantitation using [123I]iodoamphetamine (IMP) and single-photon emission computed tomography (SPECT). The table look-up (TLU) method has been shown to provide both rCBF and volume of distribution, Vd, images from two SPECT scans, while a single-scan autoradiographic (ARG) technique provided rCBF using a fixed and assumed Vd. In both methods, a single blood sample was referred to calibrate the previously determined standard input function. The present multicenter project was designed to evaluate the accuracy of both methods for use as clinical investigative tools. Ten independent institutions performed [123I]IMP-SPECT studies according to both methods in 76 subjects (10 normal volunteers, 32 patients with cerebrovascular disease, and 34 patients with other diseases). Calculated rCBF values were compared with those obtained by the following reference methods available in the participating institutions; [15O] H2O positron emission tomography (PET) (five institutions), [133Xe]SPECT (four institutions), and the [123I]IMP microsphere method (three institutions). Both ARG and TLU methods provided rCBF values that were significantly correlated with those measured by the [15O] H2O PET technique (p < 0.001 for all subjects; overall regression equation, y = 15.14 + 0.54x) and those measured by the [123I]IMP-microsphere method (p < 0.001 for all subjects: y = 2.0 + 0.80x). Significant correlation (p < 0.05) was observed in 18 of 24 subjects studied with the [133Xe] SPECT reference technique (overall regression equation, y = 15.0 + 0.55x). Mean cortical gray matter rCBF in a group of normal subject was 43.9 +/- 3.3 and 43.4 +/- 2.0 ml/min/100 g for the ARG and TLU methods, respectively. Regional Vd of [123I]IMP estimated by the TLU method was 45 ml/ml +/- 20% in the normal cortical region. Close agreement between ARG and TLU rCBF values was observed (y = -3.21 + 1.07x, r = 0.97), confirming the validity of assuming a fixed Vd in the ARG method. Results of this study demonstrate that both the ARG and TLU methods accurately and reliably estimate rCBF in a variety of clinical settings.
We studied three patients with internal carotid artery occlusion at the siphon who had recanaiization during 1 month of close observation. Angiography and duplex carotid sonography (DCS) were repeated serially in each patient. Blood flow patterns detected by DCS were classified into three patterns by specific angiographic changes. The distal occiusive flow pattern on DCS corresponds to internal carotid artery occlusion at the siphon angiographically, the median flow pattern on DCS corresponds to partial recanaiization, and a normal flow pattern on DCS indicates almost complete recanaiization. Since DCS can be easily repeated, the exact time of recanaiization can be determined noninvasively. In all three patients, hemorrhagic infarction observed on computed tomograms occurred at the time of recanaiization detected by DCS. DCS demonstrates that recanaiization is one of the mechanisms of hemorrhagic infarction. (Stroke 1989;20:680-686)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.