The mechanism of recrystallization texture development is changed by the chemical composition of materials, cold-rolling reduction, and annealing conditions. This study discusses the development of recrystallization texture for severely cold-rolled pure iron. In cold-rolled iron with 99.8% reduction, the deformation texture was a strong α-fiber (RD// < 011 > ) with high strain. During annealing in a temperature range from 20°C to 800°C, in this highly strained α-fiber, the microstructure started to recover from a low temperature. Thereafter, recrystallized grains began to appear at 350°C, and many recrystallized grains were generated at random locations. Their textural components were {100}, {211}, {111}, and {411}, which were already included in the α-fiber. At 550°C, recrystallization was completed, and the resulting recrystallization texture was similar to the original cold-rolling texture. This texture was developed by unique microstructural changes, which could be classified as continuous recrystallization. During grain growth stage, the recrystallization texture changed into the {100} < 012 > component presumably by the selective growth of recrystallized grains governed by the size effect.
緒言The mechanism of recrystallization texture development is changed by the chemical composition of materials, cold-rolling reduction, and annealing treatment conditions. In this paper, we have discussed the development of the recrystallization texture for cold-rolled iron with 99.8% reduction.In cold-rolled iron with 99.8% reduction, the deformation texture was a strong α-fiber (RD//<110>) with high strain. During annealing in a temperature range from 200 to 800˚C, in this highly strained α-fiber, the microstructure started to recover from quite a low temperature. Then recrystallized grains began to appear at 350˚C, and many recrystallized grains were generated at rather random locations. Their textural components were {100}, {211}, {111}, and {411}, which were included in the α-fiber. At 550˚C, recrystallization was completed, and the texture after full recrystallization was similar to that of the cold-rolled iron. This texture developed by unique microstructural changes, which could be classified into continuous recrystallization. The recrystallization texture: α-fiber was changed into the {100}<012> component by selective growth of recrystallized grains following the completion of recrystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.