In order to get a better understanding of different types of cancers and to find the possible biomarkers for diseases, recently, many researchers are analyzing the gene expression data using various machine learning techniques. However, due to a very small number of training samples compared to the huge number of genes and class imbalance, most of these methods suffer from overfitting. In this paper, we present a majority voting genetic programming classifier (MVGPC) for the classification of microarray data. Instead of a single rule or a single set of rules, we evolve multiple rules with genetic programming (GP) and then apply those rules to test samples to determine their labels with majority voting technique. By performing experiments on four different public cancer data sets, including multiclass data sets, we have found that the test accuracies of MVGPC are better than those of other methods, including AdaBoost with GP. Moreover, some of the more frequently occurring genes in the classification rules are known to be associated with the types of cancers being studied in this paper.
Abstract. This paper proposes an algorithm for combinatorial optimizations that uses reinforcement learning and estimation of joint probability distribution of promising solutions to generate a new population of solutions. We call it Reinforcement Learning Estimation of Distribution Algorithm (RELEDA). For the estimation of the joint probability distribution we consider each variable as univariate. Then we update the probability of each variable by applying reinforcement learning method. Though we consider variables independent of one another, the proposed method can solve problems of highly correlated variables. To compare the efficiency of our proposed algorithm with other Estimation of Distribution Algorithms (EDAs) we provide the experimental results of the two problems: four peaks problem and bipolar function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.