Perfluorooctanoic acid (PFOA) is a widely distributed recalcitrant contaminant. In recent years, advanced oxidation processes have been explored for PFOA degradation, yet factors influencing their efficacy and degradation mechanism are not fully understood. Here, we resolve ambiguity in the literature regarding the role of superoxide in PFOA degradation (e.g., by nucleophilic attack) by considering three pure superoxideproducing systems: KO 2 in dimethyl sulfoxide, xanthine oxidase with hypoxanthine, and WO x /ZrO 2 catalyst with H 2 O 2 . Superoxide production was confirmed in all systems by electron paramagnetic resonance spectroscopy and by precipitation of nitroblue tetrazolium, a common superoxide probe. Positive control experiments showed that the produced superoxide degrades ∼48% of bisphenol A within 1 day, corroborating the fact that superoxide was sufficiently stable and available for reaction in the test systems. However, no PFOA degradation was observed, which was corroborated by the absence of fluoride and degradation byproducts in all three systems. Therefore, other reaction pathways should be explored for PFOA degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.