We studied C and N mineralisation patterns from a large number of plant materials (76 samples, covering 37 species and several plant parts), and quantified how these patterns related to biological origin and selected indicators of chemical composition. We determined C and N contents of whole plant material, in water soluble material and in fractions (neutral detergent soluble material, cellulose, hemicellulose and lignin) obtained by stepwise chemical digestion (modified van Soest method). Plant materials were incubated in a sandy soil under standardised conditions (15°C, optimal water content, no N limitation) for 217 days, and CO 2 evolution and soil mineral N contents were monitored regularly. The chemical composition of the plant materials was very diverse, as indicated by total N ranging from 2 to 59 mg N g )1 , (i.e. C/N-ratios between 7 and 227). Few materials were lignified (median lignin ¼ 4% of total C). A large proportion of plant N was found in the neutral detergent soluble (NDS) fraction (average 84%) but less of the plant C (average 46%). Over the entire incubation period, holocellulose C content was the single factor that best explained the variability of C mineralisation (r ¼ )0.73 to )0.82).Overall, lignin C explained only a small proportion of the variability in C mineralisation (r ¼ )0.44 to )0.51), but the higher the lignin content, the narrower the range of cumulative C mineralisation. Initial net N mineralisation rate was most closely correlated (r ¼ 0.76) to water soluble N content of the plant materials, but from Day 22, net N mineralisation was most closely correlated to total plant N and NDS-N contents (r varied between 0.90 and 0.94). The NDS-N content could thus be used to roughly categorise the net N mineralisation patterns into (i) sustained net N immobilisation for several months; (ii) initial net N immobilisation, followed by some re-mineralisation; and (iii) initially rapid and substantial net N mineralisation. Contrary to other studies, we did not find plant residue C/N or lignin/N-ratio to be closely correlated to decomposition and N mineralisation.
The transdisciplinary field of agroecology provides a platform for experiential learning based on an expanded vision of research on sustainable farming and food systems and the application of results in creating effective learning landscapes for students. With increased recognition of limitations of fossil fuels, fresh water, and available farmland, educators are changing focus from strategies to reach maximum yields to those that feature resource use efficiency and resilience of production systems in a less benign climate. To help students deal with complexity and uncertainty and a wide range of biological and social dimensions of the food challenge, a whole-systems approach that involves life-cycle analysis and consideration of long-term impacts of systems is essential. Seven educational case studies in the Nordic Region and the U.S. Midwest demonstrate how educators can incorporate theory of the ecology of food systems with the action learning component needed to develop student potentials to create responsible change in society. New roles of agroecology instructors and students are described as they pursue a co-learning strategy to develop and apply technology to assure the productivity and security of future food systems ABSTRACT The transdisciplinary field of agroecology provides a platform for experiential learning based on an expanded vision of research on sustainable farming and food systems and the application of results in creating effective learning landscapes for students. With increased recognition of limitations of fossil fuels, fresh water, and available farmland, educators are changing focus from strategies to reach maximum yields to those that feature resource use efficiency and resilience of production systems in a less benign climate. To help students deal with complexity and uncertainty and a wide range of biological and social dimensions of the food challenge, a whole-systems approach that involves life-cycle analysis and consideration of long-term impacts of systems is essential. Seven educational case studies in the Nordic Region and the U.S. Midwest demonstrate how educators can incorporate theory of the ecology of food systems with the action learning component needed to develop student potentials to create responsible change in society. New roles of agroecology instructors and students are described as they pursue a co-learning strategy to develop and apply technology to assure the productivity and security of future food systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.