Glioblastoma multiforme (GBM; WHO astrocytoma grade IV) is considered incurable owing to its inherently profound resistance towards current standards of therapy. Considerable effort is being devoted to identifying the molecular basis of temozolomide resistance in GBMs and exploring novel therapeutic regimens that may improve overall survival. Several independent DNA repair mechanisms that normally safeguard genome integrity can facilitate drug resistance and cancer cell survival by removing chemotherapy-induced DNA adducts. Furthermore, subpopulations of cancer stem-like cells have been implicated in the treatment resistance of several malignancies including GBMs. Thus, a growing number of molecular mechanisms contributing to temozolomide resistance are being uncovered in preclinical studies and, consequently, we are being presented with a broad range of potentially novel targets for therapy. A substantial future challenge is to successfully exploit the increasing molecular knowledge contributing to temozolomide resistance in robust clinical trials and to ultimately improve overall survival for GBM patients.
Our findings identify ALKBH2 as a novel mediator of temozolomide resistance in human GBM cells. Furthermore, we place ALKBH2 into a new cellular context by showing its regulation by the p53 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.