Trends in carbon 1s ionization energies for the linear alkanes have been investigated using third-generation synchrotron radiation. The study comprises CH(4), C(2)H(6), C(3)H(8), C(4)H(10), C(5)H(12), C(6)H(14), and C(8)H(18). Both inter- and intramolecular shifts in ionization energy have been determined from gas-phase spectra and ab initio calculations. The shifts are decomposed into initial-state and final-state contributions and are shown to relate to the fundamental chemical properties of group electronegativity and polarizability. By extrapolation, we predict C1s spectra of larger n-alkanes, converging toward isolated strands of polyethylene.
The carbon 1s photoelectron spectrum of ethane, C 2 H 6 , has been measured at a photon energy of 329 eV and an instrumental resolution of 70 meV. The spectrum shows a rich vibrational structure which is resolved using least-squares fits to the data. Only C-H stretching and CCH bending modes contribute significantly to the spectrum. The lack of excitation of the C-C stretching mode is explained in terms of changes in hybridization at the spectator carbon. To investigate the possibility of incomplete localization of the core hole, the spectra of C 2 H 6 and C 2 D 6 were measured at higher experimental resolution (35 meV). The spectra are accurately fit by a model based on ab initio calculations of the vibrational energies and the geometry changes following ionization, and including vibronic coupling of the two degenerate, localized hole states. A small splitting on the order of 10-20 meV is found for the 2 A 2u and 2 A 1g core-ionized states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.