Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial–mesenchymal transition (EMT), TGF-β1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM−/−) wounds. Correspondingly, VIM−/− wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM−/− wounds. Vimentin reconstitution in VIM−/− fibroblasts restored both their proliferation and TGF-β1 production. Similarly, restoring paracrine TGF-β–Slug–EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-β1–Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation.
A ground-state dimer (denoted D(I)) exhibiting a strong absorption maximum at 477 nm (epsilon = 97 000 M(-1)cm(-1)) can form between adjacent BODIPY groups attached to mutant forms of the protein, plasminogen activator inhibitor type 1 (PAI-1). No fluorescence from excited D(I) was detected. A locally high concentration of BODIPY groups was also achieved by doping lipid phases (micelles, vesicles) with BODIPY-labeled lipids. In addition to an absorption band located at about 480 nm, a new weak absorption band is also observed at ca. 570 nm. Both bands are ascribed to the formation of BODIPY dimers of different conformation (D(I) and D(II)). Contrary to D(I) in PAI-1, the D(II) aggregates absorbing at 570 nm are emitting light observed as a broad band centered at about 630 nm. The integrated absorption band of D(I) is about twice that of the monomer, which is compatible with exciton coupling within a dimer. The Förster radius of electronic energy transfer between a BODIPY excited monomer and the ground-state dimer (D(I)()) is 57 +/- 2 A. A simple model of exciton coupling suggests that in D(I) two BODIPY groups are stacked on top of each other in a sandwich-like configuration with parallel electronic transition dipoles. For D(II) the model suggests that the S(0) --> S(1) transition dipoles are colinear. An explanation for the previously reported (J. Am. Chem. Soc. 1994, 116, 7801) exceptional light spectroscopic properties of BODIPY is also presented. These are ascribed to the extraordinary electric properties of the BODIPY chromophore. First, changes of the permanent electric dipole moment (Delta(mu) approximately -0.05 D) and polarizability (-26 x 10(-40) C m(2) V(-1)) between the ground and the first excited states are small. Second, the S(0) <--> S(1) electronic transition dipole moments are perpendicular to Delta(mu).
A Xgtll expression library containing cDNA inserts prepared from human placental mRNA was screened immunologically using an antibody probe developed against the ,8-migrating plasminogen activator inhibitor (p-PAI) purified from cultured bovine aortic endothelial cells. Thirty-four positive clones were isolated after screening 7 x i0-phages. Three clones (X1.2, X3, and X9.2) were randomly picked and further characterized. These contained inserts 1.9, 3.0, and 1.9 kilobases (kb) long, respectively. Escherichia coli lysogenic for A9.2, but not for Xgtll, produced a fusion protein of 180 kDa that was recognized by afflinity-purified antibodies against the bovine aortic endothelial cell fl-PAI and had fl-PAI activity when analyzed by reverse fibrin autography. The largest cDNA insert was sequenced and shown to be 2944 base pairs (bp) long. It has a large 3' untranslated region [1788 bp, excluding the poly(A) tail] and contains the entire coding region of the mature protein but lacks the initiation codon and part of the signal peptide coding region at the 5' terminus. The two clones carrying the 1.9-kb cDNA inserts were partially sequenced and shown to be identical to the 3.0-kb cDNA except that they were truncated, lacking much of the 3' untranslated region. Blot hybridization analysis of electrophoretically fractionated RNA from the human fibrosarcoma cell line HT-1080 was performed using the 3.0-kb cDNA as hybridization probe. Two distinct transcripts, 2.2 and 3.0 kb, were detected, suggesting that the 1.9-kb cDNA may have been copied from the shorter RNA transcript. The amino acid sequence deduced from the cDNA was aligned with the NH2-terminal sequence of the human fl-PAL. Based on this alignment, the mature human P-PAI is 379 amino acids long and contains an NH2-terminal valine. The deduced amino acid sequence has extensive (30%) homology with ao-antitrypsin and antithrombin III, indicating that the fl-PAI is a member of the serine proteinase inhibitor (serpin) superfamily.The generation of plasmin from plasminogen provides an important source of proteolytic activity in cells, tissues, and biological fluids (1, 2). Precise regulation of plasminogen activator (PA) activity may thus constitute a critical feature of many biological systems (3). Such control may be at the level of the formation and resolution of fibrin itself (4) To facilitate the precise biochemical characterization of P-PAI, and to eventually understand the nature of factors regulating 3-PAI gene expression, we have undertaken the molecular cloning of the gene. Here we describe the isolation of P-PAI cDNA from a human placental expression library and demonstrate that the (3-PAI is a member of the serine protease inhibitor (serpin) superfamily (23, 24).
The action of LH is mediated through specific plasma membrane receptors that are both up- and down-regulated in the ovary during the reproductive cycle. Using immature rats treated with PMSG and hCG as a model system, we have studied the regulation and distribution of LH receptor mRNA in different cell types during follicle development, ovulation, and luteinization by Northern blot and in situ hybridization. In untreated rats, LH receptor mRNA was below the detection level in granulosa cells, cumulus cells, and oocytes, while low levels of LH receptor mRNA were found in the thecal cells. After stimulation with PMSG, expression of LH receptor mRNA was enhanced in the thecal-interstitial cells, while a more dramatic increase in receptor mRNA abundance took place in granulosa cells of large tertiary follicles. In these follicles, the abundance of LH receptor mRNA varied among different subpopulations of granulosa cells, with mural granulosa cells close to the basement membrane exhibiting higher levels than granulosa cells located closer to the antrum, and cumulus cells and the oocyte lacking detectable hybridization signal. The uneven expression of LH receptor mRNA endows different ovarian cells with varying hormonal responsiveness. After an ovulatory dose of hCG, LH receptor mRNA levels were dramatically decreased, particularly in the granulosa cells of preovulatory follicles, to reach the lowest levels just before ovulation. During the transformation of ovulated follicles into corpora lutea, the expression of LH receptor message was again increased. Our results reveal that the previously documented regulation of the LH receptor-binding activity during ovarian development correlates with expression of the LH receptor transcripts, suggesting that the LH receptor gene is regulated in a complex manner during the periovulatory period to achieve cell-specific expression together with gonadotropin induction and suppression of receptor gene activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.