Terahertz (THz) light is non-ionizing and highly sensitive to subtle changes in water concentration which can be indicative of disease. The short THz penetration depth in bio-samples restricts in vivo measurements to be in a reflection geometry and the sample is often placed onto an imaging window. Upon contacting the imaging window, occlusion and compression of the skin affect the THz response. If not appropriately controlled, this could cause misleading results. In this work, we investigate and quantify how the applied pressure affects the THz response of skin and employ a stratified model to help understand the mechanisms at play. This work will enable future THz studies to have a more rigorous experimental protocol, which in turn will facilitate research in various potential biomedical applications under investigation.
Water diffusion and the concentration profile within the skin significantly affect the surrounding chemical absorption and molecular synthesis. Occluding the skin causes water to accumulate in the top layer of the skin (the stratum corneum [SC]) and also affects the water diffusivity. Scar treatments such as silicone gel and silicone sheets make use of occlusion to increase skin hydration. However with existing techniques, it is not possible to quantitatively measure the diffusivity of the water during occlusion: current methods determine water diffusivity by measuring the water evaporated through the skin and thus require the skin to breathe. In this work, we use the high sensitivity of terahertz light to water to study how the water content in the SC changes upon occlusion. From our measurements, we can solve the diffusion equations in the SC to deduce the water concentration profile in occluded skin and subsequently to determine the diffusivity. To our knowledge, this is the first work showing how the diffusivity of human skin can be measured during occlusion and we envisage this paper as being used as a guide for non-invasively determining the diffusivity of occluded human skin in vivo.
Silicone gel sheeting (SGS) is widely used for scar treatment; however, studies showing its interaction with skin and efficacy of scar treatment are still lacking. THz light is non-ionizing and highly sensitive to changes in water content and thus skin hydration. In this work, we use in-vivo THz imaging to monitor how SGS affects the THz response of human skin during occlusion, and the associated THz reflectivity and refractive index changes are presented. We find that SGS effectively hydrates the skin beneath it, with minimal lateral effects beyond the sheeting. Our work demonstrates that THz imaging is able to detect the subtle hydration changes on the surface of human skin caused by SGS, and it has the potential to be used to evaluate different scar treatment strategies.
Navigating the renal stents towards caudal orientation can achieve better haemodynamic outcomes in both fenestrated devices. Custom-made fenestrated stent grafts are the preferred choice for elective patients. Further clinical evidence is required to validate the computational simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.