OBJECTIVELipotoxicity and ectopic fat deposition reduce insulin signaling. It is not clear whether excess fat deposition in nonadipose tissue arises from excessive fatty acid delivery from adipose tissue or from impaired adipose tissue storage of ingested fat.RESEARCH DESIGN AND METHODSTo investigate this we used a whole-body integrative physiological approach with multiple and simultaneous stable-isotope fatty acid tracers to assess delivery and transport of endogenous and exogenous fatty acid in adipose tissue over a diurnal cycle in lean (n = 9) and abdominally obese men (n = 10).RESULTSAbdominally obese men had substantially (2.5-fold) greater adipose tissue mass than lean control subjects, but the rates of delivery of nonesterified fatty acids (NEFA) were downregulated, resulting in normal systemic NEFA concentrations over a 24-h period. However, adipose tissue fat storage after meals was substantially depressed in the obese men. This was especially so for chylomicron-derived fatty acids, representing the direct storage pathway for dietary fat. Adipose tissue from the obese men showed a transcriptional signature consistent with this impaired fat storage function.CONCLUSIONSEnlargement of adipose tissue mass leads to an appropriate downregulation of systemic NEFA delivery with maintained plasma NEFA concentrations. However the implicit reduction in adipose tissue fatty acid uptake goes beyond this and shows a maladaptive response with a severely impaired pathway for direct dietary fat storage. This adipose tissue response to obesity may provide the pathophysiological basis for ectopic fat deposition and lipotoxicity.
Aims/hypothesis The aim of this study was to explore whether fat cell size in human subcutaneous and omental adipose tissue is independently related to insulin action and adipokine levels. Materials and methods Fat cells were prepared from abdominal subcutaneous biopsies obtained from 49 type 2 diabetic and 83 non-diabetic subjects and from omental biopsies obtained from 37 non-diabetic subjects. Cell size and insulin action on glucose uptake capacity in vitro were assessed in isolated fat cells. Insulin sensitivity in vivo was assessed with euglycaemic-hyperinsulinaemic clamps. Fasting blood samples were collected and adipokines and NEFA were measured. Results Negative correlations were found between subcutaneous fat cell size and insulin sensitivity assessed as M-value during clamp and as insulin action on glucose uptake in fat cells in vitro. This was seen in non-diabetic subjects after including age, sex and BMI in the analyses. No such relationship was found in type 2 diabetic subjects. In both groups, subcutaneous fat cell size correlated positively and independently with plasma levels of leptin but not to any of the other assessed adipokines. In nondiabetic subjects, omental fat cell size was independently and negatively correlated with insulin action in subcutaneous, but not omental, fat cells in vitro.Conclusions/interpretation Fat cell enlargement is associated with insulin resistance in non-diabetic individuals independently of BMI. This was not seen in type 2 diabetic subjects, suggesting that after development of type 2 diabetes other factors, not related to fat cell size, become more important for the modulation of insulin resistance.
Human adipose tissue has a significant potential to up-regulate fat storage during a normal day that goes beyond increased lipoprotein lipase activation. The adaptation toward increasing fat storage may provide an explanation for the beneficial properties of normal amounts of adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.