Cobalamin (Cbl, vitamin B12) serves for two essential cofactors in mammals. The pathway for its intestinal absorption, plasma transport, and cellular uptake uses cell surface receptors and three Cbl-transporting proteins, haptocorrin, intrinsic factor, and transcobalamin (TC). We present the structure determination of a member of the mammalian Cbl-transporter family. The crystal structures of recombinant human and bovine holo-TCs reveal a two-domain architecture, with an N-terminal ␣6-␣6 barrel and a smaller C-terminal domain. One Cbl molecule in base-on conformation is buried inside the domain interface. Structural data combined with previous binding assays indicate a domain motion in the first step of Cbl binding. In a second step, the weakly coordinated ligand H 2O at the upper axial side of added H2O-Cbl is displaced by a histidine residue of the ␣6-␣6 barrel. Analysis of amino acid conservation on TC's surface in orthologous proteins suggests the location of the TC-receptor-recognition site in an extended region on the ␣6-␣6 barrel. The TC structure allows for the mapping of sites of amino acid variation due to polymorphisms of the human TC gene. Structural information is used to predict the overall fold of haptocorrin and intrinsic factor and permits a rational approach to the design of new Cbl-based bioconjugates for diagnostic or therapeutic drug delivery.cobalamin ͉ crystal structure ͉ P259R polymorphism ͉ transport protein
Osteopontin (OPN) is a multiphosphorylated glycoprotein found in bone and other normal and malignant tissues, as well as in the physiological fluids urine and milk. The present study demonstrates that bovine milk osteopontin is phosphorylated at 27 serine residues and 1 threonine residue. Phosphoamino acids were identified by a combination of amino acid analysis, sequence analysis of S-ethylcysteine-derivatized phosphopeptides, and mass spectrometric analysis. Twenty-five phosphoserines and one phosphothreonine were located in Ser/Thr-XGlu/Ser(P)/Asp motifs, and two phosphoserines were found in the sequence Ser-X-X-Glu/Ser(P). These sequence motifs are identical with the recognition sequences of mammary gland casein kinase and casein kinase 11, respectively. Examination of the phosphorylation pattern revealed that the phosphorylations were clustered in groups of approximately three spanned by unphosphorylated regions of 11-32 amino acids. This pattern is probably of importance in the multiple functions of OPN involving interaction with Ca2+ and inorganic calcium salts. Furthermore, three 0-glycosylated threonines (Thr 115, Thr 124, and Thr 129) have been identified in a threonineand proline-rich region of the protein. Three putative N-glycosylation sites (Asn 63, Asn 85, and Asn 193) are present in bovine osteopontin, but sequence and mass spectrometric analysis showed that none of these asparagines were glycosylated in bovine mammary gland osteopontin. Alignment analysis showed that the majority of the phosphorylation sites in bovine osteopontin as well as all three 0-glycosylation sites were conserved in other mammalian sequences. This conservation of serines, even in otherwise less well-conserved regions of the protein, indicates that the phosphorylation of osteopontin at specific sites is essential for the function of the protein.Keywords: mineralization; 0-glycosylation; osteopontin; phosphorylation; phosphoserine; phosphothreonine; S-ethylcysteine The phosphorylation of serine, threonine, and tyrosine residues in intracellular proteins is an essential and well-documented mechanism in the regulation of cell physiology. Less attention has been directed to the localization and effects of phosphorylation in extracellular proteins. As the number of examples of phosphorylated proteins has intensified, it has become apparent that a majority of these contain multiple phosphorylations (Roach, 1991). In extracellular proteins, these multiple phosphorylations are often of structural importance in the forma-.~
OPN (osteopontin) is an integrin-binding highly phosphorylated glycoprotein, recognized as a key molecule in a multitude of biological processes such as bone mineralization, cancer metastasis, cell-mediated immune response, inflammation and cell survival. A significant regulation of OPN function is mediated through PTM (post-translational modification). Using a combination of Edman degradation and MS analyses, we have characterized the complete phosphorylation and glycosylation pattern of native human OPN. A total of 36 phosphoresidues have been localized in the sequence of OPN. There are 29 phosphorylations (Ser8, Ser10, Ser11, Ser46, Ser47, Thr50, Ser60, Ser62, Ser65, Ser83, Ser86, Ser89, Ser92, Ser104, Ser110, Ser113, Thr169, Ser179, Ser208, Ser218, Ser238, Ser247, Ser254, Ser259, Ser264, Ser275, Ser287, Ser292 and Ser294) located in the target sequence of MGCK (mammary gland casein kinase) also known as the Golgi kinase (S/T-X-E/S(P)/D). Six phosphorylations (Ser101, Ser107, Ser175, Ser199, Ser212 and Ser251) are located in the target sequence of CKII (casein kinase II) [S-X-X-E/S(P)/D] and a single phosphorylation, Ser203, is not positioned in the motif of either MGCK or CKII. The 36 phosphoresidues represent the maximal degree of modification since variability at many sites was seen. Five threonine residues are O-glycosylated (Thr118, Thr122, Thr127, Thr131 and Thr136) and two potential sites for N-glycosylation (Asn63 and Asn90) are not occupied in human milk OPN. The phosphorylations are arranged in clusters of three to five phosphoresidues and the regions containing the glycosylations and the RGD (Arg-Gly-Asp) integrin-binding sequence are devoid of phosphorylations. Knowledge about the positions and nature of PTMs in OPN will allow a rational experimental design of functional studies aimed at understanding the structural and functional interdependences in diverse biological processes in which OPN is a key molecule.
The glycoprotein bovine lactadherin (formerly known as PAS-6/7) comprises two EGF-like domains and two C-like domains found in blood clotting factors V and VIII. Bovine lactadherin binds to alpha(v)beta(5) integrin in an RGD-dependent manner and also to phospholipids, especially phosphatidyl serine. To define and characterize these bindings the interactions between lactadherin and different mammalian cell types were investigated. Using recombinant forms of bovine lactadherin, the human breast carcinomas MCF-7 cells expressing the alpha(v)beta(5) integrin receptor were shown to bind specifically to RGD containing lactadherin but not to a mutated RGE lactadherin. A monoclonal antibody against the alpha(v)beta(5) integrin receptor and a synthetic RGD-containing peptide inhibited the adhesion of MCF-7 cells to lactadherin. Green monkey kidney MA-104 cells, also expressing the alpha(v)beta(3) together with the alpha(v)beta(5) integrin, showed binding to bovine lactadherin via both integrins. To investigate the interaction of lipid with lactadherin two fragments were expressed corresponding to the C1C2 domains and the C2 domain. Both fragments bound to phosphatidyl serine in a concentration-dependent manner with an affinity similar to native lactadherin (K(d) = 1.8 nM). A peptide corresponding to the C-terminal part of the C2 domain inhibited the binding of lactadherin to phospholipid in a concentration-dependent manner, and finally it was shown that lactadherin mediates binding between artificial phosphatidyl serine membranes and MCF-7 cells. Taken together these results show that lactadherin can act as link between two surfaces by binding to integrin receptors through its N-terminus and to phospholipids through its C-terminus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.