Energy-efficient thermal management systems for Emobility help to decrease energy consumption and increase range. Due to transient external conditions and the increasing system complexity, optimization-based control approaches are required in order to harness the full potential of such systems. In (Fischer et al., 11th Int. Modelica Conf, 2015), we have presented a model-based development cycle for a thermal management system in Emobility to this end. In this article, we build upon this work to describe the use of this model within a nonlinear model predictive control (NMPC) approach. The main benefits of using an advanced optimization-based control system in this application are a) the ability to control the battery temperature and the cabin temperature simultaneously, b) the increased energy efficiency achieved by exploiting the predictive character of the optimizationbased control approach, c) the possibility to include operational limits as constraints in the optimization problems and d) the fast reaction to disturbances or model parameter changes. We evaluate the merit of the proposed advanced control system by way of a comparison to conventional PID controller.
Dipl.-Ing. Günter Eberspach ist Direktor Innovationsmanagement bei der Eberspächer Climate Control Systems GmbH & Co. KG in Esslingen. Dipl.-Ing. Johannes Eger ist technischer Projektleiter bei der Eberspächer Climate Control Systems GmbH & Co. KG in Esslingen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.