The spectroscopic properties and the electronic structure of the only nitrous oxide complex existing in isolated form, [Ru(NH(3))(5)(N(2)O)]X(2) (1, X = Br(-), BF(4)(-)), are investigated in detail in comparison to the nitric oxide precursor, [Ru(NH(3))(5)(NO)]X(3) (2). IR and Raman spectra of 1 and of the corresponding (15)NNO labeled complex are presented and assigned with the help of normal coordinate analysis (NCA) and density functional (DFT) calculations. This allows for the identification of the Ru-N(2)O stretch at approximately 300 cm(-)(1) and for the unambiguous definition of the binding mode of the N(2)O ligand as N-terminal. Obtained force constants are 17.3, 9.6, and 1.4 mdyn/A for N-N, N-O, and Ru-N(2)O, respectively. The Ru(II)-N(2)O bond is dominated by pi back-donation, which, however, is weak compared to the NO complex. This bond is further weakened by Coulomb repulsion between the fully occupied t(2g) shell of Ru(II) and the HOMO of N(2)O. Hence, nitrous oxide is an extremely weak ligand to Ru(II). Calculated free energies and formation constants for [Ru(NH(3))(5)(L)](2+) (L = NNO, N(2), OH(2)) are in good agreement with experiment. The observed intense absorption at 238 nm of 1 is assigned to the t(2g) --> pi(*) charge transfer transition. These data are compared in detail to the spectroscopic and electronic structural properties of NO complex 2. Finally, the transition metal centered reaction of nitrous oxide to N(2) and H(2)O is investigated. Nitrous oxide is activated by back-donation. Initial protonation leads to a weakening of the N-O bond and triggers electron transfer from the metal to the NN-OH ligand through the pi system. The implications of this mechanism for biological nitrous oxide reduction are discussed.
IR and Raman spectra of [Ru(NH3)5(N2O)]Br2 and [Ru(NH3)5(N2O)](BF4)2 and of the corresponding 15 NNO labeled complex are presented and assigned with the help of normal coordinate analysis (NCA) and density functional (DFT) calculations. The results unambiguously show that the N 2 O ligand is end-on terminally bonded via the N atom to Ru II . Nitrous oxide is found to act as an extremely weak ligand to Ru II . The results are compared in detail with spectroscopic and electronic properties of the NO complex [Ru(NH3)5(NO)]Br3. -(PAULAT, F.; KUSCHEL, T.; NAETHER, C.; PRANEETH, V. K. K.; SANDER, O.; LEHNERT*, N.; Inorg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.