Aging of the human skeleton is characterized by decreased bone formation and bone mass and these changes are more pronounced in patients with osteoporosis. As osteoblasts and adipocytes share a common precursor cell in the bone marrow, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis is the result of enhanced adipognesis versus osteoblastogenesis from precursor cells in the bone marrow. Thus, we examined iliac crest bone biopsies obtained from 53 healthy normal individuals (age 30-100) and 26 patients with osteoporosis (age 52-92). Adipose tissue volume fraction (AV), hematopoietic tissue volume fraction (HV) and trabecular bone volume fraction (BV) were quantitated as a percentage of total tissue volume fraction (TV) (calculated as BV + AV + HV) using the point-counting method. We found an age-related increase in AV/TV (r = 0.53, P < 0.001, n = 53) and an age-related decline in BV/TV (r = -0.46, P < 0.001, n = 53) as well as in the HV/TV (r -0.318, P < 0.05, n = 53). There was an age-related inverse correlation between BV/TV and AV/TV (r = -0.58, P < 0.001). No significant correlation between the AV/TV and the body mass index (r = 0.06, n.s., n = 52) was detectable. Compared with age-matched controls, patients with osteoporosis exhibited an increased AV/TV (P < 0.05) and decreased BV/TV (P < 0.05) but no statistically significant difference in HV/TV. Our data support the hypothesis that with aging and in osteoporosis an enhanced adipogenesis is observed in the bone marrow and that these changes are inversely correlated to decreased trabecular bone volume. The cellular and molecular mechanisms mediating these changes remain to be determined.
Both serum levels of sCD163 and the presence of CD68(+) macrophage infiltration at the tumor invasive front are independent predictors of survival in AJCC stage I/II melanoma. CD163(+) cell infiltration in tumor stroma may be predictive of survival.
The molecular landscape in non-muscle-invasive bladder cancer (NMIBC) is characterized by large biological heterogeneity with variable clinical outcomes. Here, we perform an integrative multi-omics analysis of patients diagnosed with NMIBC (n = 834). Transcriptomic analysis identifies four classes (1, 2a, 2b and 3) reflecting tumor biology and disease aggressiveness. Both transcriptome-based subtyping and the level of chromosomal instability provide independent prognostic value beyond established prognostic clinicopathological parameters. High chromosomal instability, p53-pathway disruption and APOBEC-related mutations are significantly associated with transcriptomic class 2a and poor outcome. RNA-derived immune cell infiltration is associated with chromosomally unstable tumors and enriched in class 2b. Spatial proteomics analysis confirms the higher infiltration of class 2b tumors and demonstrates an association between higher immune cell infiltration and lower recurrence rates. Finally, the independent prognostic value of the transcriptomic classes is documented in 1228 validation samples using a single sample classification tool. The classifier provides a framework for biomarker discovery and for optimizing treatment and surveillance in next-generation clinical trials.
BACKGROUND: Tumor cell and host immune cell interaction plays a key role in carcinogenesis. Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in cancer and believed to be an important mediator of tumor-induced immunosuppression. This paper aims to describe the prognostic impact of neutrophil and dendritic cell infiltration in primary melanoma and the association of this infiltration with activated STAT3 (pSTAT3) in primary melanoma cells. METHODS: Formalin-fixed, paraffin-embedded primary melanomas from 186 stage-I/II melanoma patients surgically resected from 1997 to 2000. Infiltrating neutrophils (CD66b), dendritic cells (CD123þ and DC-LAMPþ), T-lymphocytes (CD8) and pSTAT3 melanoma cell expression were studied by immunohistochemistry and evaluated as present or absent. DC-LAMPþ cell infiltration was evaluated as absent/few versus dense. Study endpoints: relapse-free survival, melanoma-specific, and overall survival. RESULTS: The median observation time was 12.2 years (range, 10.4-14.2 years). Fifty-one deaths were observed of which 38 (20%) were melanoma-specific. In a multivariate Cox proportional hazards model including ulceration and melanoma thickness, neutrophil and CD123þ dendritic cell infiltration were independently associated with poor prognosis (CD66b: hazard ratio [HR] ¼ 3.13; 95% confidence interval [CI], 1.43-6.83; P ¼ .004; CD123: HR ¼ 2.45; 95% CI, 1.22-4.92; P ¼ .012). The association between melanoma cell pSTAT3 expression and immune infiltration (neutrophils and CD123þ cells) was strong. pSTAT3 expression, CD8 and DC-LAMP infiltration were not independently associated with poor prognosis. CONCLUSIONS: Neutrophil infiltration and CD123þ dendritic cell infiltration in primary melanoma are independently associated with poor prognosis. Melanoma cell expression of pSTAT3 is strongly associated with the surrounding immune infiltrate. Cancer 2012;118:2476-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.