This paper presents the results from stratigraphic and geomorphologic investigations in the Poolepynten area, Prins Karls Forland, western Svalbard. Field mapping, soil profile development and 14 C dating reveal the existence of at least two generations of raised beach deposits. Well-developed raised beaches rise to the Late Weichselian marine limit at 36 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit to approximately 65 m a.s.l. Expansion of local glaciers in the area during the Late Weichselian is indicated by a till that locally overlies pre-Late Weichselian raised beach deposits. Stratigraphic data from coastal sections reveal two shallow marine units deposited during part of oxygen isotope stage 5. The two shallow marine units are separated by a subglacially deposited till that indicates an ice advance from Prins Karls Forland into the Forlandsundet basin some time during the latter part of stage 5. Discontinuous glaciofluvial deposits and a cobble-boulder lag could relate to a Late Weichselian local glacial advance across the coastal site. Late Weichselian/early Holocene beach deposits cap the sedimentary succession. Palaeotemperature estimates derived from amino acid ratios in subfossil marine molluscs indicate that the area has not been submerged or covered by warm based glacier ice for significant periods of time during the time interval ca. 70 ka to 10 ka.
Two raised marine sequences from Prins Karls Forland, western Svalbard, interpreted to have been deposited during part of isotope substage 5e (Eemian) and substage 5a, were studied for foraminifera content. Time constraints are given by 14C ages, infrared stimulated luminescence age estimates and amino acid ratios in subfossil marine molluscs. A diamicton (unit B) separates the two marine sequences and reflects an advancement of local glaciers sometime late in isotope stage 5. The two marine sequences contain diverse benthic foraminiferal faunas, indicating periods of a relatively warm and seasonally ice‐free marine shelf environment. Compared to the lowermost sequence (unit A), the upper marine sequence (unit C) seems to reflect a more shallow environment that could have resulted from the global lowering of the sea level towards the end of isotope stage 5. Our results further emphasise the problem of biostratigraphic distinction between interglacial and interstadial deposits at high latitudes, with temperature conditions for substage 5a close to those of substage 5e and present conditions.
Uncertainty remains if ice-free marginal areas existed on the west coast of Svalbard during the Late Weichselian. Field mapping and correlation to well dated raised beach sequences on nearby Brøggerhalvøya reveal the existence of two generations of raised beach deposits on northern Prins Karls Forland. Distinct beach ridges rise up to the inferred Late Weichselian marine limit at 18 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit up to approximately 60 m a.s.l. Expansion of local glaciers during the Late Weichselian is indicated by the limited distribution of a till that overlies parts of the older beach sequence. Stratigraphic data and chronological control indicate deposition in a shallow marine environment before 50 ka BP. Correlation to stratigraphic sites on western Svalbard suggests deposition at c. 70±10 ka. Glaciotectonic structures disclose expansion of local glaciers into the Forlandsundet basin during stage 4 or late stage 5 high relative sea level. Palaeotemperature estimates derived from amino acid ratios indicate that during the time interval c. 70 to 10 ka the area was exposed to cold subaerial temperatures with low rates of racemization. Pedogenesis and frost-shattered clasts at the contact between c. 70 ka deposits and Holocene deposits further indicate a prolonged period of subaerial polar desert conditions during this time interval. The evidence suggests that the Barents Sea ice sheet did not extend across northern Prins Karls Forland during the Weichselian. It is inferred that during the Late Weichselian, ice was drained throughout the major fjords on the west coast of Svalbard and that relatively large marginal areas experienced polar desert conditions and minor expansions of local glaciers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.