Climate change and biodiversity loss can be addressed simultaneously by well-planned conservation policies, but this requires information on the alignment of co-benefits under different management actions. One option is to allow forests to naturally regenerate on marginal agricultural land: a key question is whether this approach will deliver environmental co-benefits in an economically viable manner. Here we report on a survey of carbon stocks, biodiversity and economic values from one of the worldâ (tm) s most endemic-rich and threatened ecosystems: the western Andes of Colombia. We show that naturally regenerating secondary forests accumulate significant carbon stocks within 30 years, and support biodiverse communities including many species at risk of extinction. Cattle farming, the principal land use in the region, provides minimal economic returns to local communities, making forest regeneration a viable option despite weak global carbon markets. Efforts to promote natural forest regeneration in the tropical Andes could therefore provide globally significant carbon and biodiversity co-benefits at minimal cost. © 2014 Macmillan Publishers Limited
Surface fires in Amazonian forests could contribute as much as 5% of annual carbon emissions from all anthropogenic sources during severe El Niño years. However, these estimates are based on short-term figures of post-burn tree mortality, when large thicker barked trees (representing a disproportionate amount of the forest biomass) appear to resist the fires. On the basis of a longer term study, we report that the mortality of large trees increased markedly between 1 and 3 years, more than doubling current estimates of biomass loss and committed carbon emissions from low-intensity fires in tropical forests
Summary1. Two strategies are often promoted to mitigate the effects of agricultural expansion on biodiversity: one integrates wildlife-friendly habitats within farmland (land sharing), and the other intensifies farming to allow the offset of natural reserves (land sparing). Their relative merits for biodiversity protection have been subject to much debate, but no previous study has examined whether trade-offs between the two strategies depend on the proximity of farmed areas to large tracts of natural habitat. 2. We sampled birds and dung beetles across contiguous forests and agricultural landscapes (low-intensity cattle farming) in a threatened hotspot of endemism: the Colombian Choc oAndes. We test the hypothesis that the relative biodiversity benefits of either strategy depend partially on the degree to which farmlands are isolated from large contiguous blocks of forest. 3. We show that distance from forest mediates the occurrence of many species within farmland. For the majority of species, occurrence on farmland depends on both isolation from forest and the proportionate cover of small-scale wildlife-friendly habitats within the farm landscape, with both variables having a similar overall magnitude of effect on occurrence probabilities. 4. Simulations suggest that the biodiversity benefits of land sharing decline significantly with increasing distance from forest, but land sparing benefits remain consistent. In farm management units situated close to large contiguous forest (<500 m), land sharing is predicted to provide equal benefits to land sparing, but land sparing becomes increasingly superior in management units situated further from forest (1500 m). The predicted biodiversity benefits of land sparing are similar across all distances, provided that sparing mechanisms genuinely deliver protection for contiguous forest tracts. 5. Synthesis and applications. The persistence of bird and dung beetle communities in lowintensity pastoral agriculture is strongly linked to the proximity of surrounding contiguous forests. Land-sharing policies that promote the integration of small-scale wildlife-friendly habitats might be of limited benefit without simultaneous measures to protect larger blocks of natural habitat, which could be achieved via land-sparing practices. Policymakers should carefully consider the extent and distribution of remaining contiguous natural habitats when designing agri-environment schemes in the tropics.
Most phenological studies to date have taken place in upland forest above the maximum flood level of nearby streams and rivers. In this paper, we examine the phenological patterns of tree assemblages in a large Amazonian forest landscape, including both upland (terra firme) and seasonally flooded (várzea and igapó) forest. The abundance of vegetative and reproductive phenophases was very seasonal in all forests types. Both types of flooded forest were more deciduous than terra firme, shedding most of their leaves during the inundation period. Pulses of new leaves occurred mainly during the dry season in terra firme, whereas those in the two floodplain forests were largely restricted to the end of the inundation period. Flowering was concentrated in the dry season in all forest types and was strongly correlated with the decrease in rainfall. The two floodplain forests concentrated their fruiting peaks during the inundation period, whereas trees in terra firme tended to bear fruits at the onset of the wet season. The results suggest that the phenological patterns of all forest types are largely predictable and that the regular and prolonged seasonal flood pulse is a major determinant of phenological patterns in várzea and igapó, whereas rainfall and solar irradiance appear to be important in terra firme. The three forest types provide a mosaic of food resources that has important implications for the conservation and maintenance of wide‐ranging frugivore populations in Amazonian forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.