Hydropower is an important renewable energy resource worldwide. However, its development is accompanied with environmental and social drawbacks. Issues of degradation of the environment and climate change can negatively impact hydropower generation. A sustainable hydropower project is possible, but needs proper planning and careful system design to manage the challenges. Well-planned hydropower projects can contribute to supply sustainable energy. An up-to-date knowledge is necessary for energy planners, investors, and other stakeholders to make informed decisions concerning hydropower projects. This is basically a review paper. Apart from using expert knowledge, the authors have also consulted extensively from journals, conference papers, reports, and some documents to get secondary information on the subject. The paper has reviewed the world energy scenario and how hydropower fits in as the solution to the global sustainable energy challenge. Issues of hydropower resource availability, technology, environment and climate change have been also discussed. Hydropower is sensitive to the state of environment, and climate change. With global climate change, though globally the potential is stated to slightly increase, some countries will experience a decrease in potential with increased risks. Adaptation measures are required to sustainably generate hydropower. These are also discussed in the paper.
The importance of renewable energy such as small hydropower for sustainable power generation in relation to its capacity to contribute towards alleviating acute shortage of rural electricity supply in the sub-Saharan African region has been discussed. A relatively comprehensive small hydropower technology review has been presented. Rural electricity supply scenario in the region has been presented and, in general, the region has very low electricity access levels coupled with various challenges. Small hydropower technology has been discussed as one of the promising decentralised power generation system for rural electricity supply in the region. Despite challenges in data acquisition, this paper has shown that the SSA has significant hydropower resources, but the level of installation is very low. Challenges hampering SHP technology development in the region have been identified and discussed, such as those concerning technology, climate change, finance, and policy. This is basically a paper where the authors consulted a wide range of literature including journals, conference proceedings, and reports as well as expert knowledge in the area. It is hoped that this paper contributes to the information base on SHP technology which is quite lacking in the region.
Measurements have been performed on a reversible-pump turbine model installed in a closed loop conduit system. The characteristics of the unstable pump turbine in turbine mode show a hysteresis pattern. Hence the output of the system is dependent on the previous state of the flow and not only the input variables. The hysteresis pattern is a characteristic of the whole system, but is caused by the unstable pump turbine. The unstable part of the characteristics was measured by three different methods: 1) by transient sampling of data during the transition between operation modes, 2) by throttling valves that steepens the friction-loss curve, and 3) by switching the causality in the system such that the torque becomes an input parameter and the speed of rotation becomes an output parameter. In the valve throttling measurements a pressure dependency was seen for the characteristics at high nondimensional speeds. This was further investigated by additional measurements of the characteristics at three different pressure levels. A rigid-water-column stability analysis has been conducted. The classic H-Q criterion describes static stability for a pump turbine with constant speed of rotation. With the speed of rotation as a variable, there is a new static stability criterion in addition to the dynamic stability criterion.
Characteristics of a reversible-pump turbine have been measured with five different leading edge profiles in turbine mode. These profiles varied the inlet blade angle and the radius of curvature. Further geometry parameters have been investigated through numerical simulations. The pump turbine tested has much steeper flow-speed characteristics than a comparable Francis turbine. The most obvious geometry difference is the inlet part of the runner blades, where the blade angle for the pump turbine is much smaller than for the Francis turbine. Two different blade angles have been tested on a physical model and computational fluid dynamics (CFD) simulations have been performed on four different angles. Both methods show that a smaller blade angle gives less steep characteristics in turbine mode, whereas the measured s-shape in turbine brake- and turbine pumping mode gets more exaggerated. Long-radius leading edges result in less steep characteristics. The unstable pump turbine characteristics are in the literature shown to be a result of vortex formation in the runner and guide vane channels. A leading edge with longer curvature radius moves the formation of vortices towards higher speed of rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.