Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
IntroductionEarly detection of breast cancer is key to successful treatment and patient survival. We have previously reported the potential use of gene expression profiling of peripheral blood cells for early detection of breast cancer. The aim of the present study was to refine these findings using a larger sample size and a commercially available microarray platform.MethodsBlood samples were collected from 121 females referred for diagnostic mammography following an initial suspicious screening mammogram. Diagnostic work-up revealed that 67 of these women had breast cancer while 54 had no malignant disease. Additionally, nine samples from six healthy female controls were included. Gene expression analyses were conducted using high density oligonucleotide microarrays. Partial Least Squares Regression (PLSR) was used for model building while a leave-one-out (LOO) double cross validation approach was used to identify predictors and estimate their prediction efficiency.ResultsA set of 738 probes that discriminated breast cancer and non-breast cancer samples was identified. By cross validation we achieved an estimated prediction accuracy of 79.5% with a sensitivity of 80.6% and a specificity of 78.3%. The genes deregulated in blood of breast cancer patients are related to functional processes such as defense response, translation, and various metabolic processes, such as lipid- and steroid metabolism.ConclusionsWe have identified a gene signature in whole blood that classifies breast cancer patients and healthy women with good accuracy supporting our previous findings.
A whole genome screen was performed using oligonucleotide microarray analysis on blood from a large clinical cohort of Alzheimer's disease (AD) patients and control subjects as clinical sample. Blood samples for total RNA extraction were collected in PAXgene tubes, and gene expression analysis performed on the AB1700 Whole Genome Survey Microarrays. When comparing the gene expression of 94 AD patients and 94 cognitive healthy controls, a Jackknife gene selection based method and Partial Least Square Regression (PLSR) was used to develop a disease classifier algorithm, which gives a test score indicating the presence (positive) or absence (negative) of AD. This algorithm, based on 1239 probes, was validated in an independent test set of 63 subjects comprising 31 AD patients, 25 age-matched cognitively healthy controls, and 7 young controls. This algorithm correctly predicted the class of 55/63 (accuracy 87%), including 26/31 AD samples (sensitivity 84%) and 29/32 controls (specificity 91%). The positive likelihood ratio was 8.9 and the area under the receiver operating characteristic curve (ROC AUC) was 0.94. Furthermore, the algorithm also discriminated AD from Parkinson's disease in 24/27 patients (accuracy 89%). We have identified and validated a gene expression signature in blood that classifies AD patients and cognitively healthy controls with high accuracy and show that alterations specific for AD can be detected distant from the primary site of the disease.
Despite a variety of testing approaches, it is often difficult to make an accurate diagnosis of Alzheimer's disease (AD), especially at an early stage of the disease. Diagnosis is based on clinical criteria as well as exclusion of other causes of dementia but a definitive diagnosis can only be made at autopsy. We have investigated the diagnostic value of a 96-gene expression array for detection of early AD. Gene expression analysis was performed on blood RNA from a cohort of 203 probable AD and 209 cognitively healthy age matched controls. A disease classification algorithm was developed on samples from 208 individuals (AD = 103; controls = 105) and was validated in two steps using an independent initial test set (n = 74; AD = 32; controls = 42) and another second test set (n = 130; AD = 68; controls = 62). In the initial analysis, diagnostic accuracy was 71.6 ± 10.3%, with sensitivity 71.9 ± 15.6% and specificity 71.4 ± 13.7%. Essentially the same level of agreement was achieved in the two independent test sets. High agreement (24/30; 80%) between algorithm prediction and subjects with available cerebrospinal fluid biomarker was found. Assuming a clinical accuracy of 80%, calculations indicate that the agreement with underlying true pathology is in the range 85%-90%. These findings suggest that the gene expression blood test can aid in the diagnosis of mild to moderate AD, but further studies are needed to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.