Structural electrode materials that integrate high mechanical strength and high electrochemical performances are attractive as they are indispensable for building lightweight, flexible electronics. [1][2][3] These materials should be able to withstand extreme mechanical stress and deformations while maintaining high charge storage properties, and thereby decrease the electrochemically inactive weight and volume for packaging of devices, especially in limited spaces. [1] Most conventional electrode materials, however, fail to meet both requirements. [4] Some of reported strategies involved using carbon fiber-reinforced composites [5,6] or graphene-based materials [1] as structural electrodes to deliver mechanical strength. These materials, however, fall short on the electrochemi cal energy storage capacitance. Alternatively, metal oxides [7] or conducting polymers [8] can be incorporated to boost the capacitance of the graphene-based materials. The problem is the weak interactions between different components, which results in low mecha nical stability of the final composites. [7,9] Therefore, there is a crucial need for the development of new-generation structural energy storage nanocomposites, which monolithically integrate excellent mechanical properties, high electronic and ionic conductivities, and high charge storage capabilities. A balance should also exist between these properties without substantially sacrificing one property over the other. [1] The family of two-dimensional (2D) metal carbides and nitrides, collectively known as MXene, are interesting materials for building high-performance supercapacitors. [10][11][12][13][14][15][16] MXenes have a general formula of M n+1 X n T x , where M is an early transition metal such as Ti, X is carbon or nitrogen, and T x indicates the presence of different functional groups (O, OH, and F) on the surface of metal layers, a result of aqueous exfoliation synthesis of MXenes. [10,17,18] Ti 3 C 2 T x MXene has been widely reported as a high-performance electrode material either in its pristine form or in hybrids with other guest materials such as poly(vinyl alcohol) (PVA), [18] polypyrrole, [19,20] and polyaniline, [21] as well as in hybridization with other carbon materials such as graphene, [22] carbon nanotubes, [23][24][25] and carbon nanofibers. [26] Most of the MXene hybrid nanocomposites, however, have only shown improvement in either capacitance or mechanical properties while sacrificing one property over the other, and they lack the required mechanical integrityThe family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti 3 C 2 T x ) nanoco...
This work aims at understanding the excellent ability of nanocelluloses to disperse carbon nanomaterials (CNs) in aqueous media to form long-term stable colloidal dispersions without the need for chemical functionalization of the CNs or the use of surfactant. These dispersions are useful for composites with high CN content when seeking waterbased, efficient, and green pathways for their preparation. To establish a comprehensive understanding of such dispersion mechanism, colloidal characterization of the dispersions has been combined with surface adhesion measurements using colloidal probe atomic force microscopy (AFM) in aqueous media. AFM results based on model surfaces of graphene and nanocellulose further suggest that there is an association between the nanocellulose and the CN. This association is caused by fluctuations of the counterions on the surface of the nanocellulose inducing dipoles in the sp 2 carbon lattice surface of the CNs. Furthermore, the charges on the nanocellulose will induce an electrostatic stabilization of the nanocellulose−CN complexes that prevents aggregation. On the basis of this understanding, nanocelluloses with high surface charge density were used to disperse and stabilize carbon nanotubes (CNTs) and reduced graphene oxide particles in water, so that further increases in the dispersion limit of CNTs could be obtained. The dispersion limit reached the value of 75 wt % CNTs and resulted in high electrical conductivity (515 S/cm) and high modulus (14 GPa) of the CNT composite nanopapers.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.
The effect of side chain to charge ratio on the frictional properties of adsorbed layers formed by bottle-brush polyelectrolytes with poly(ethylene oxide) side chains has been investigated. The brush polyelectrolytes were preadsorbed from 0.1 mM NaNO(3) solutions onto mica and silica surfaces; the interfacial friction was then measured in polyelectrolyte-free solutions via AFM (with the silica surface acting as the colloidal probe). It was concluded that the decisive factor for achieving favorable lubrication properties is the concentration of nonadsorbing poly(ethylene oxide) side chains in the interfacial region. However, contrary to what may be expected, the results showed that an ideal brush layer structure with the adsorbed polymers adopting comb-like conformation is not necessary for achieving a low coefficient of friction in the asymmetric mica-silica system. In fact, the lowest coefficient of friction (<0.01) under applied pressures as high as 30 MPa was observed for a system with a side chain to charge ratio of 9:1, incapable of forming brush-like layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.