In this thesis, we consider some aspects of noncommutative classical invariant theory, i.e., noncommutative invariants of the classical group SL(2, k). We develop a symbolic method for invariants and covariants, and we use the method to compule some invariant algebras. The subspace ar~ of the noncommutative invariant algebra J'~ consisting of homogeneous elements of degree m has the structure of a module over the symmetric group S,,. We find the explicit decomposition into irreducible modules. As a consequence, we obtain the Hilbert series of the commutative classical invariant algebras. The Cayley---Sylvester theorem and the Hermite reciprocity law are studied in some detail. We consider a new power series //(I'd, t) whose coefficients are the number of irreducible S,,-modules in the decomposition of J'~, and show that it is rational. Finally, we develop some analogues of all this for covariants.
No abstract
Det övergripande syftet med denna artikel är att analysera och beskriva yngre elevers uppfattningar av det matematiska i ett algebraiskt uttryck och utifrån det diskutera vad som kan utgöra kritiska aspekter för utvecklandet av mera kvalificerade uppfattningar. Artikeln bygger på data från ett forskningsprojekt där elever i förskoleklass, årskurs 1 och årskurs 4 intervjuades med syfte att analysera de aktuella elevernas kvalitativt skilda sätt att uppfatta det matematiska i algebraiska uttryck. Intervjuerna analyserades fenomenografiskt. Studiens resultat visar tre kvalitativt skilda kategorier av yngre elevers uppfattningar av det matematiska i algebraiska uttryck. Det matematiska i ett algebraiskt uttryck erfars som ”något som kan och bör räknas ut”, ”något som beskriver en relation mellan komponenter” och ”något som representerar en situation”. Vidare identifierades tre kritiska aspekter i relation till kategorierna. De kritiska aspekter som ger eleverna möjlighet att kvalificera sina uppfattningar för att utveckla ett mer komplext kunnande av algebraiska uttryck är att kunna urskilja att 1) ett uttryck består av olika komponenter som har olika funktioner, 2) en och samma variabel i ett uttryck har samma värde och 3) värdet på en variabel i ett uttryck bestäms relationellt. Att urskilja sådana kritiska aspekter kan hjälpa eleverna att kvalificera sitt kunnande. Således måste de kritiska aspekterna beaktas vid utformningen av undervisningen. Abstract in English The overall purpose of this article is to analyze and describe younger students’ conceptions of or ways of experiencing the mathematics in an algebraic expression and to discuss what can be critical aspects for the development of more qualified conceptions. The article is based on data from a research project where students in preschool class, Grade 1 and Grade 4 were interviewed with the aim of analyzing the students' qualitatively different ways of experiencing the mathematics in algebraic expressions. The interviews were analyzed with phenomenography. The results show three qualitatively different categories of younger students’ conceptions of the mathematics in algebraic expressions. The mathematics in an algebraic expression is experienced as ”something that can and should be calculated", ”something that describes a relationship between components”, and ”something that represents a situation”. Furthermore, three so-called critical aspects the students need to discern were identified in relation to the categories 1) an expression consists of different components that have different functions, 2) one and the same variable in an expression has the same value and 3) the value of a variable in an expression is determined relationally. Discerning such critical aspects may help the students to qualify their ways of knowing. Thus, the critical aspects need to be considered in the design of teaching. FULL TEXT IN SWEDISH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.