The dominating functional property of pulmonary surfactant is to reduce the surface tension at the alveolar aidliquid interface, and thereby prevent the lungs from collapsing at the end of expiration. In addition, the system exhibits host-defense properties. Insufficient amounts of pulmonary surfactant in premature infants causes respiratory distress syndrome, a serious threat which nowadays can be effectively treated by airway instillation of surfactant preparations. Surfactant is a mixture of many molecular species, mainly phospholipids and specific proteins, surfactant protein A (SP-A), SP-B, SP-C and SP-D. SP-A and SP-D are water-soluble and belong to the collectins, a family of large multimeric proteins which structurally exhibit collagenousAectin hybrid properties and functionally are Caz+-dependent carbohydrate binding proteins involved in innate host-defence functions. SP-A and SP-D also bind lipids and SP-A is involved in organization of alveolar surfactant phospholipids. SP-B belongs to another family of proteins, which includes also lipid-interacting polypeptides with antibacterial and lytic properties. SP-B is a 17.4-kDa homodimer and each subunit contains three intrachain disulphides and has been proposed to contain four amphipathic helices oriented pairwise in an antiparallel fashion. SP-A, SP-B and SP-D all have been detected also in the gastrointestinal tract. SP-C, in contrast, appears to be a unique protein with extreme structural and stability properties and to exist exclusively in the lungs. SP-C is a lipopeptide containing covalently linked palmitoyl chains and is folded into a 3.7-nm a-helix with a central 2.3-nm all-aliphatic part, making it perfectly suited to interact in a transmembranous way with a fluid bilayer composed of dipalmitoylglycerophosphocholine, the main component of surfactant. Homozygous genetic deficiency of proSP-B causes lethal respiratory distress soon after birth and is associated with aberrant processing of the precursor of SP-C. This review focuses on the chemical composition, structures and interactions of the pulmonary surfactant, in particular the associated proteins.
The nuclear magnetic resonance (NMR) structure of the pulmonary surfactant-associated lipoplypeptide C (SP-C) was determined in a mixed solvent of C2H3Cl/C2H3OH/ 1 M HCl 32:64:5 (v/v). Sequence-specific 1H NMR assignments and the collection of conformational constraints were achieved with two-dimensional 1H NMR, and the structure was calculated with the distance geometry program DIANA. The root mean square deviations for the well-defined polypeptide segment of residues 9-34 calculated for the 20 best energy-minimized DIANA conformers relative to their mean are 0.5 and 1.3 A for the polypeptide backbone atoms N, C alpha, and C', and for all heavy atoms, respectively. The 35-residue polypeptide chain of SP-C forms an alpha-helix between positions 9 and 34, which includes two segments of seven and four consecutive valyls that are separated by a single leucyl residue. The N-terminal hexapeptide segment, which includes two palmitoylcysteinyls, is flexibly disordered. The length of the alpha-helix is about 37 A, and the helical segment of residues 13-28, which contains exclusively aliphatic residues with branched side chains, is 23-A long and about 10 A in diameter. The alpha-helix is outstandingly regular, with virtually identical chi 1 angles for all valyl residues. The observation of a helical structure of SP-C was rather unexpected, considering that Val is generally underrepresented in alpha-helices, and it provides intriguing novel insights into the structural basis of SP-C functions as well as into general structural aspects of protein-lipid interactions in biological membranes.
Hydrophobic low-molecular-mass proteins were isolated from minced pig lungs and separated into two fractions. Electrophoresis of protein fraction 1 showed two major bands. Calculations of molecular masses from the electrophoretic mobilities are unreliable because of the extreme hydrophobicity of the peptides. However, the two bands were at positions corresponding to apparent molecular masses of about 3 kDa and 14 kDa, while sequence degradation disclosed only one major structure. Electrophoretic separation of protein fraction 2 revealed one band, at an apparent molecular mass of about 6 kDa. Microheterogeneities at the N terminus of both fractions were observed. However, the two fractions had different N-terminal structures and amino acid compositions. Consequently they are concluded to represent different polypeptides without common segments. Bronchoalveolar lavage from humans also contains surfactant polypeptides and at least the fraction 2 peptide is highly similar in human and porcine surfactants.Artificial surfactant preparations, obtained by recombination of protein fraction 1 or 2 with a mixture of synthetic phospholipids, were evaluated with the pulsating bubble method and in experiments on artificially ventilated premature newborn rabbits. The addition of protein fraction 1 to the phospholipid mixture improved surface adsorption from more than 300 s to about 2 s and reduced minimum surface tension from more than 20 mN/m to nearly 0 as measured with a pulsating bubble. When this surfactant preparation was instilled into the airways of newborn rabbits, the tidal volumes at insufflation pressure 25 cm H 2 0 was increased about twentyfold compared to the volumes obtained in non-treated controls. Preparations based on protein fraction 1 had better in vitro and in vivo properties than those based on protein fraction 2. Both these protein-based preparations were decidedly more effective than phospholipids alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.