A lot of people around the world commute using public transportation and would like to spend this time viewing streamed video content such as news or sports updates. However, mobile wireless networks typically suffer from severe bandwidth fluctuations, and the networks are often completely unresponsive for several seconds, sometimes minutes. Today, there are several ways of adapting the video bitrate and thus the video quality to such fluctuations, e.g., using scalable video codecs or segmented adaptive HTTP streaming that switches between non-scalable video streams encoded in different bitrates. Still, for a better long-term video playout experience that avoids disruptions and frequent quality changes while using existing video adaptation technology, it is desirable to perform bandwidth prediction and planned quality adaptation. This paper describes a video streaming system for receivers equipped with a GPS. A receiver's download rate is constantly monitored, and periodically reported back to a central database along with associated GPS positional data. Thus, based on the current location, a streaming device can use a GPS-based bandwidth-lookup service in order to better predict the near-future bandwidth availability and create a schedule for the video playout that takes likely future availability into account. To create a prototype and perform initial tests, we conducted several field trials while commuting using public transportation. We show how our database has been used to predict bandwidth fluctuations and network outages, and how this information helps maintain uninterrupted playback with less compromise on video quality than possible without prediction.
In this demo, we present DAVVI, a prototype of the next generation multimedia entertainment platform. It delivers multi-quality video content in a torrent-similar way like known systems from Move Networks, Microsoft and Apple do. However, it also provides a brand new, personalized user experience. Through applied search, personalization and recommendation technologies, end-users can efficiently search and retrieve highlights and combine arbitrary events in a customized manner using drag and drop. The created playlists of video segments are then delivered back to the system to improve future search and recommendation results. Here, we demonstrate this system using a soccer example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.