ABSTRACT:The European Learning Analytics Community Exchange (LACE) project is responsible for an ongoing series of workshops on ethics and privacy in learning analytics (EP4LA), which have been responsible for driving and transforming activity in these areas. Some of this activity has been brought together with other work in the papers that make up this special issue. These papers cover the creation and development of ethical frameworks, as well as tools and approaches that can be used to address issues of ethics and privacy. This editorial suggests that it is worth taking time to consider the often interwoven issues of ethics, data protection, and privacy separately. The challenges mentioned within the special issue are summarized in a table of 22 challenges used to identify the values that underpin work in this area. Nine ethical goals are suggested as the editors' interpretation of the unstated values that lie behind the challenges raised in this paper.
Smart learning environments (SLEs) utilize a range of digital technologies in supporting learning, education and training; they also provide a prominent signpost for how future learning environments might be shaped. Thus, while innovation proceeds, SLEs are receiving growing attention from the research community, outputs from which are discussed in this paper. Likewise, this broad application of educational digital technologies is also the remit of standardization in an ISO committee, also discussed in this paper. These two communities share a common interest in, conceptualizing this emerging domain with the aim to identifying direction to further development. In doing so, terminology issues arise along with key questions such as, 'how is smart learning different from traditional learning?' Presenting a bigger challenge is the question, 'how can standardization work be best scoped in today's innovation-rich, networked, cloud-based and data-driven learning environments?' In responding, this conceptual paper seeks to identify candidate constructs and approaches that might lead to stable, coherent and exhaustive understanding of smart learning environments, thereby providing standards development for learning, education and training a needed direction. Based on reviews of pioneering work within smart learning, smart education and smart learning environments we highlight two models, a cognitive smart learning model and a smartness level model. These models are evaluated against current standardization challenges in the field of learning, education and training to form the basis for a development platform for new standards in this area.
Student Support Tools Widget, widget as you lead, I am performing well indeed!-Using results from a formative offline study to inform an empirical online study about a learning analytics widget in a collaborative learning environment
ABSTRACT:Studies have shown that issues of privacy, control of data, and trust are essential to implementation of learning analytics systems. If these issues are not addressed appropriately, systems will tend to collapse due to a legitimacy crisis, or they will not be implemented in the first place due to resistance from learners, their parents, or their teachers. This paper asks what it means to give priority to privacy in terms of data exchange and application design and offers a conceptual tool, a Learning Analytics Design Space model, to ease the requirement solicitation and design for new learning analytics solutions. The paper argues the case for privacy-driven design as an essential part of learning analytics systems development. A simple model defining a solution as the intersection of an approach, a barrier, and a concern is extended with a process focusing on design justifications to allow for an incremental development of solutions. This research is exploratory in nature, and further validation is needed to prove the usefulness of the Learning Analytics Design Space model.
Privacy and data protection are a major stumbling blocks for a data-driven educational future. Privacy policies are based on legal regulations, which in turn get their justification from political, cultural, economical and other kinds of discourses. Applied to learning analytics, do these policies also need a pedagogical grounding? This paper is based on an actual conundrum in developing a technical specification on privacy and data protection for learning analytics for an international standardisation organisation. Legal arguments vary a lot around the world, and seeking ontological arguments for privacy does not necessarily lead to a universal acclaim of safeguarding the learner meeting the new data-driven practices in education. Maybe it would be easier to build consensus around educational values, but is it possible to do so?This paper explores the legal and cultural contexts that make it a challenge to define universal principles for privacy and data protection. If not universal principles, consent could be the point of departure for assuring privacy? In education, this is not necessarily the case as consent will be balanced by organisations’ legitimate interests and contract. The different justifications for privacy, the legal obligation to separate analysis from intervention, and the way learning and teaching works makes it necessary to argue data privacy from a pedagogical perspective. The paper concludes with three principles that are proposed to inform an educational maxim for privacy and data protection in learning analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.