Offloading processes responsible for a robot's control operation to external computational resources has been in the spotlight for many years. The vision of having access to a full cloud cluster for any autonomous robot has fueled many scientific fields. Such implementations rely strongly on a robust communication link between the robot and the cloud and have been tested over numerous network architectures. However, various limitations have been highlighted upon the realization of such platforms. For small-scale local deployments, technologies such as Wi-Fi, Zigbee, and blacktooth are inexpensive and easy to use but suffer from low transmit power and outdoor coverage limitations. In this study, the offloading time-critical control operations for an unmanned aerial vehicle (UAV) using cellular network technologies were evaluated and demonstrated experimentally, focusing on the 5G technology. The control process was hosted on an edge server that served as a ground control station (GCS). The server performs all the computations required for the autonomous operation of the UAV and sends the action commands back to the UAV over the 5G interface. This research focuses on analyzing the low-latency needs of a closed-loop control system that is put to the test on a real 5G network. Furthermore, practical limitations, integration challenges, the intended cellular architecture, and the corresponding Key Performance Indicators (KPIs) that correlate to the real-life behavior of the UAV are rigorously studied. INDEX TERMS 5G, Edge computing, Robotics, UAV I. INTRODUCTION A. BACKGROUND & MOTIVATION
Recently, unmanned aerial vehicle (UAV)-oriented applications have been growing worldwide. Thus, there is a strong interest in using UAVs for applications requiring wide-area connectivity coverage. Such applications might be power line inspection, road inspection, offshore site monitoring, wind turbine inspections, and others. The utilization of cellular networks, such as the fifth-generation (5G) technology, is often considered to meet the requirement of wide-area connectivity. This study quantifies the performance of 5G-enabled UAVs when sensor data throughput requirements are within the 5G network’s capability and when throughput requirements significantly exceed the capability of the 5G network, respectively. Our experimental results show that in the first case, the 5G network maintains bounded latency, and the application behaves as expected. In the latter case, the overloading of the 5G network results in increased latency, dropped packets, and overall degradation of the application performance. Our findings show that offloading processes requiring moderate sensor data rates work well, while transmitting all the raw data generated by the UAV’s sensors is not possible. This study highlights and experimentally demonstrates the impact of critical parameters that affect real-life 5G-enabled UAVs that utilize the edge-offloading power of a 5G cellular network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.