Multiphoton microscopy (MPM) holds promise as a noninvasive imaging technique for characterizing collagen structure, and thus mechanical properties, through imaging second harmonic generation (SHG) and two-photon fluorescence in engineered and real connective tissues. Controlling polymerization pH to manipulate collagen gel microstructure, we quantified pore and fiber dimensions using both standard methods and image correlation spectroscopy (ICS) on MPM, scanning electron, and darkfield microscopy images. The latter two techniques are used to confirm microstructural measurements made from MPM images. As polymerization pH increased from 5.5 to 8.5, mean fiber diameter decreased from 3.7 +/- 0.7 microm to 1.6 +/- 0.3 microm, the average pore size decreased from 81.7 +/- 3.7 microm(2) to 7.8 +/- 0.4 microm(2), and the pore area fraction decreased from 56.8% +/- 0.8% to 18.0% +/- 1.3% (measured from SHG images), whereas the storage modulus G' and loss modulus G'', components of the shear modulus, increased approximately 33-fold and approximately 16-fold, respectively. A characteristic length scale measured using ICS, W(ICS), correlates well with the mean fiber diameter from SHG images (R(2) = 0.95). Semiflexible network theory predicts a scaling relationship of the collagen gel storage modulus (G') depending upon mesh size and fiber diameter, which are estimated from SHG images using ICS. We conclude that MPM and ICS are an effective combination to assess bulk mechanical properties of collagen hydrogels in a noninvasive, objective, and systematic fashion and may be useful for specific in vivo applications.
Uracil-DNA glycosylase releases free uracil from DNA and initiates base excision repair for removal of this potentially mutagenic DNA lesion. Using the yeast twohybrid system, human uracil-DNA glycosylase encoded by the UNG gene (UNG) was found to interact with the C-terminal part of the 34-kDa subunit of replication protein A (RPA2). No interaction with RPA4 (a homolog of RPA2), RPA1, or RPA3 was observed. A sandwich enzyme-linked immunosorbent assay with trimeric RPA and the two-hybrid system both demonstrated that the interaction depends on a region in UNG localized between amino acids 28 and 79 in the open reading frame. In this part of UNG a 23-amino acid sequence has a significant homology to the RPA2-binding region of XPA, a protein involved in damage recognition in nucleotide excision repair. Trimeric RPA did not enhance the activity of UNG in vitro on single-or double-stranded DNA. A part of the N-terminal region of UNG corresponding in size to the complete presequence was efficiently removed by proteinase K, leaving the proteinase K-resistant compact catalytic domain intact and fully active. These results indicate that the N-terminal part constitutes a separate structural domain required for RPA binding and suggest a possible function for RPA in base excision repair. Uracil-DNA glycosylase (UDG)1 is the first enzyme in base excision repair for removal of uracil from DNA and its main function is probably to remove mutagenic uracil residues resulting from deamination of cytosine in DNA (1). The subsequent steps in the base excision repair pathway include, as the minimal enzymatic requirement in vitro, an apurinic/apyrimidinic endonuclease, a deoxyribophosphodiesterase activity (which may be contributed by DNA polymerase ), DNA polymerase , and a DNA ligase (2). In analogy to the complexity of the nucleotide excision repair pathway, base excision repair is likely to be more complex in vivo. This is in fact supported by the finding of an alternative, short patch pathway, requiring proliferating cell nuclear antigen and DNA polymerase ␦ (3, 4). A catalytically fully active form of human UDG has been expressed in Escherichia coli (5) and structure-function relationships determined by site-directed mutagenesis and x-ray crystallography (6). These studies identified this form of human UDG as a one domain structure with a positively charged DNA-binding groove. UDGs are relatively small monomeric enzymes that, at least in vitro, do not require cofactors. However, UDG is preferentially associated with replicating SV40 minichromosomes, indicating a possible interaction with components of the replication machinery (7). The gene encoding the major human UDG, UNG, is transcribed predominantly late in the G 1 -phase, resulting in a 2-3-fold increase in UDG activity early in the S-phase (8). The cell cycle regulation is consistent with the presence of several putative regulatory elements detected in the UNG gene (9), including a putative element for binding of replication protein A (RPA) (10) reported previously in D...
Nuclear (UNG2) and mitochondrial (UNG1) forms of human uracil-DNA glycosylase are both encoded by the UNG gene but have different N-terminal sequences. We have expressed fusion constructs of truncated or site-mutated UNG cDNAs and green fluorescent protein cDNA and studied subcellular sorting. The unique 44 N-terminal amino acids in UNG2 are required, but not sufficient, for complete sorting to nuclei. In this part the motif R17K18R19is essential for sorting. The complete nuclear localization signal (NLS) in addition requires residues common to UNG2 and UNG1 within the 151 N-terminal residues. Replacement of certain basic residues within this region changed the pattern of subnuclear distribution of UNG2. The 35 unique N-terminal residues in UNG1 constitute a strong and complete mitochondrial localization signal (MLS) which when placed at the N-terminus of UNG2 overrides the NLS. Residues 11-28 in UNG1 have the potential of forming an amphiphilic helix typical of MLSs and residues 1-28 are essential and sufficient for mitochondrial import. These results demonstrate that UNG1 contains a classical and very strong MLS, whereas UNG2 contains an unusually long and complex NLS, as well as subnuclear targeting signals in the region common to UNG2 and UNG1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.