Widespread species often possess physiological mechanisms for coping with thermal heterogeneity, and uncovering these mechanisms provides insight into species' responses to climate change. The emergence of non-invasive corticosterone (CORT) assays allows us to rapidly assess physiological responses to environmental change on a large scale. We lack, however, a basic understanding of how temperature affects CORT, and whether temperature and CORT interactively affect performance. Here, we examined the effects of elevated temperature on CORT and whole-organism performance in a terrestrial salamander, , across a latitudinal gradient. Using water-borne hormone assays, we found that raising ambient temperature from 15 to 25°C increased CORT release at a similar rate for salamanders from all sites. However, CORT release rates were higher overall in the warmest, southernmost site. Elevated temperatures also affected physiological performance, but the effects differed among sites. Ingestion rate increased in salamanders from the warmer sites but remained the same for those from cooler sites. Mass gain was reduced for most individuals, although this reduction was more dramatic in salamanders from the cooler sites. We also found a temperature-dependent relationship between CORT and food conversion efficiency (i.e. the amount of mass gained per unit food ingested). CORT was negatively related to food conversion efficiency at 25°C but was unrelated at 15°C. Thus, the energetic gains of elevated ingestion rates may be counteracted by elevated CORT release rates experienced by salamanders in warmer environments. By integrating multiple physiological metrics, we highlight the complex relationships between temperature and individual responses to warming climates.
North American waterfowl harvest regulations are largely guided by the status of breeding populations. Nonetheless, understanding the demographics of wintering waterfowl populations can elucidate the effects of hunting pressure on population dynamics. The ring-necked duck (Aythya collaris) breeds and winters in all North American administrative flyways and is one of the most abundant and most harvested diving ducks in the Atlantic Flyway. But few studies have investigated the winter ecology of ringnecked ducks. We used a known-fate analysis to estimate period survival probability using data from 87 female ring-necked ducks marked with satellite transmitters in 2 regions of the southern Atlantic Flyway during winters of 2017-2018 and 2018-2019. Winter (128-day) survival probability was higher for individuals in the Red Hills region of southern Georgia and northern Florida (0.875, 95% CI = 0.691-0.952) than individuals in central South Carolina (0.288, 95% CI = 0.082-0.514). We attribute the regional disparity in winter survival probabilities to differences in hunting pressure, which are reflected in the number of harvests we observed in each region. Our findings warrant further investigation into regional variation in winter survival of southern Atlantic Flyway ring-necked ducks, and, specifically, the relationship between variable harvest pressure and winter survival and its influence on ring-necked duck population dynamics and adaptive harvest management decisions.
North American waterfowl conservation, management, and harvest regulation are delegated across administrative flyways and primarily guided by breeding population estimates. The Ring-necked Duck (Aythya collaris) is a late-nesting migratory species that winters and breeds across all of the United States Fish and Wildlife Service administrative flyways. We used satellite telemetry to characterize the spring migration and breeding distribution of 25 female Ring-necked Ducks marked in the southern Atlantic Flyway, USA in the winters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.