α2-Adrenoceptor-activation lowers central sympathetic output, peripheral, vesicular norepinephrine release, epinephrine secretion, and modulates vascular tension. We previously demonstrated that α2-adrenoceptor-mediated inhibition of basal norepinephrine release was not reflected in plasma unless re-uptake through the norepinephrine transporter (NET) was blocked. Tyramine activates reverse norepinephrine transport through NET. Here we tested the hypothesis that tyramine, by engaging NET in release, also blocks re-uptake, and therefore allows manipulation of pre-junctional α2-adrenoceptors to directly regulate norepinephrine overflow to plasma. We compared in anesthetized spontaneously hypertensive rats (SHRs) and normotensive controls (WKYs), the effect of α2-adrenoreceptor antagonist (L-659,066) and/or agonist (clonidine) on norepinephrine overflow and increase in total peripheral vascular resistance (TPR) evoked by tyramine-infusion (1.26 μmol/min/kg, 15 min) and epinephrine secretion activated by the surgical stress. TPR was computed as blood pressure divided by cardiac output, recorded as ascending aortic flow. Plasma catecholamine concentrations after tyramine were higher in SHRs than WKYs. Pre-treatment with L-659,066 increased the catecholamine concentrations in WKYs, but only if combined with clonidine in SHRs. Clonidine alone reduced tyramine-induced norepinephrine overflow in SHRs, and epinephrine in both strains. Tyramine-induced increase in TPR was not different after clonidine, eliminated after L-659,066 and L-659,066 + clonidine in WKYs, but only after L-659,066 + clonidine in SHRs. We conclude that tyramine-infusion does allow presynaptic regulation of vesicular release to be accurately assessed by measuring differences in plasma norepinephrine concentration. Our results indicate that presynaptic α2-adrenoceptor regulation of norepinephrine release from nerve vesicles and epinephrine secretion is dysfunctional in SHRs, but can be restored by clonidine.
α2-adrenoceptors (AR) lower central sympathetic output and peripheral catecholamine release, thereby protecting against sympathetic hyperactivity and hypertension. Norepinephrine re-uptake–transporter effectively (NET) removes norepinephrine from the synapse. Overflow to plasma will therefore not reflect release. Here we tested if inhibition of re-uptake allowed presynaptic α2AR release control to be reflected as differences in norepinephrine overflow in anesthetized hypertensive spontaneously hypertensive rats (SHR) and normotensive rats (WKY). We also tested if α2AR modulated the experiment-induced epinephrine secretion, and a phenylephrine-induced, α1-adrenergic vasoconstriction. Blood pressure was recorded through a femoral artery catheter, and cardiac output by ascending aorta flow. After pre-treatment with NET inhibitor (desipramine), and/or α2AR antagonist (yohimbine, L-659,066) or agonist (clonidine, ST-91), we injected phenylephrine. Arterial blood was sampled 15 min later. Plasma catecholamine concentrations were not influenced by phenylephrine, and therefore reflected effects of pre-treatment. Desipramine and α2AR antagonist separately had little effect on norepinephrine overflow. Combined, they increased norepinephrine overflow, particularly in SHR. Clonidine, but not ST-91, reduced, and pertussis toxin increased norepinephrine overflow in SHR and epinephrine secretion in both strains. L-659,066 + clonidine (central α2AR-stimulation) normalized the high blood pressure, heart rate, and vascular tension in SHR. α2AR antagonists reduced phenylephrine-induced vasoconstriction equally in WKY and SHR. Conclusions: α2AAR inhibition increased norepinephrine overflow only when re-uptake was blocked, and then with particular efficacy in SHR, possibly due to their high sympathetic tone. α2AAR inhibited epinephrine secretion, particularly in SHR. α2AAR supported α1AR-induced vasoconstriction equally in the two strains. α2AR malfunctions were therefore not detected in SHR under this basal condition.
beta-Adrenoceptors contribute to hypertension in spite of the fact that beta-adrenoceptor agonists lower blood pressure. We aimed to differentiate between these functions and to identify differences between spontaneously hypertensive and normotensive rats. beta-Adrenoceptor antagonists with different subtype selectivity or the ability to cross the blood-brain barrier were used to demonstrate beta-adrenoceptor involvement in resting blood pressure and the response to tyramine-induced peripheral norepinephrine release. The centrally acting propranolol (beta(1+2[+3])), CGP20712A (beta(1)), ICI-118551 (beta(2)), and SR59230A (beta(3)), as well as peripherally restricted nadolol (beta(1+2)) and atenolol (beta(1)), were administered intravenously, separately, or in combinations. Blood pressure, cardiac output, heart rate, total peripheral vascular resistance, and plasma catecholamine concentrations were evaluated. beta-Adrenoceptor antagonists had little effect on cardiovascular baselines in normotensive rats. In hypertensive rats, antagonist-induced hypotension paralleled reductions in resistance, except for atenolol, which reduced cardiac output. The resistance reduction involved primarily neuronal catecholamine, central beta(1)-adrenoceptors, and peripheral beta(2)-adrenoceptors. Tyramine induced a transient, prazosin-sensitive vascular resistance increase. Inhibition of nerve-activated, peripheral beta(1/3)-adrenoceptors enhanced this alpha(1)-adrenoceptor-dependent vasoconstriction in normotensive but not hypertensive rats. In hypertensive rats, return to baseline was eliminated after inhibition of the central beta(1)-adrenoceptor, epinephrine release (acute adrenalectomy), and peripheral beta(2/3)-adrenoceptors. Adrenalectomy eliminated beta-adrenoceptor-mediated vasodilation in hypertensive rats, and tyramine induced a prazosin-sensitive vasoconstriction, which was inhibited by combined blockade of central beta(1)- and peripheral beta(2)-adrenoceptors. In conclusion, nerve-activated beta(1)- and beta(3)-adrenoceptor-mediated vasodilation was not present in hypertensive rats, whereas epinephrine-activated beta(2)- and beta(3)-adrenoceptor-mediated vasodilation was upregulated. There was also a hypertensive, nerve-activated vasoconstrictory mechanism present in hypertensive rats, involving central beta(1)- and peripheral beta(2)-adrenoceptors combined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.