The ascendancy of coronavirus has become widespread all around the world. For the prevention of viral transmission, the pattern of disease is explored. Epidemiological modeling is a vital component of the research. These models assist in studying various aspects of infectious diseases, such as death, recovery, and infection rates. Coronavirus trends across several countries may analyze sufficiently using SIR, SEIR, and SIQR models. Across this study, we propose two modified versions of the SEIRD method for evaluating the transmission of this infectious disease in the South Asian countries, more precisely, in the south Asian subcontinent. The SEIRD model is updated further by fusing some new factors, namely, isolation for the suspected people and recovery and death of the people who are not under the coverage of healthcare schemes or reluctant to receive treatment for various catastrophes. We will investigate the influences of those ingredients on public health-related issues. Finally, we will predict and display the infection scenario and relevant elements with the concluding remarks through the statistical analysis.
In this paper, we explore the Riccati-based boundary feedback stabilization of the incompressible Navier–Stokes flow via the Krylov subspace techniques. Since the volume of data derived from the original models is gigantic, the feedback stabilization process through the Riccati equation is always infeasible. We apply a
ℋ
2
optimal model-order reduction scheme for reduced-order modeling, preserving the sparsity of the system. An extended form of the Krylov subspace-based two-sided iterative algorithm (TSIA) is implemented, where the computation of an equivalent Sylvester equation is included for minimizing the computation time and enhancing the stability of the reduced-order models with satisfying the Wilson conditions. Inverse projection approaches are applied to get the optimal feedback matrix from the reduced-order models. To validate the efficiency of the proposed techniques, transient behaviors of the target systems are observed incorporating the tabular and figurative comparisons with MATLAB simulations. Finally, to reveal the advancement of the proposed techniques, we compare our work with some existing works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.