Background & Aims The first-line treatment for non-alcoholic fatty liver disease (NAFLD) is weight reduction. Several diets have been proposed, with various effects specifically on liver steatosis. This trial compared the effects of intermittent calorie restriction (the 5:2 diet) and a low-carb high-fat diet (LCHF) on reduction of hepatic steatosis. Methods We conducted an open-label randomised controlled trial that included 74 patients with NAFLD randomised in a 1:1:1 ratio to 12 weeks’ treatment with either a LCHF or 5:2 diet, or general lifestyle advice from a hepatologist (standard of care; SoC). The primary outcome was reduction of hepatic steatosis as measured by magnetic resonance spectroscopy. Secondary outcomes included transient elastography, insulin resistance, blood lipids, and anthropometrics. Results The LCHF and 5:2 diets were both superior to SoC treatment in reducing steatosis (absolute reduction: LCHF: −7.2% [95% CI = −9.3 to −5.1], 5:2: −6.1% [95% CI = −8.1 to −4.2], SoC: −3.6% [95% CI = −5.8 to −1.5]) and body weight (LCHF: −7.3 kg [95% CI = −9.6 to −5.0]; 5:2: −7.4 kg [95% CI = −8.7 to −6.0]; SoC: −2.5 kg [95% CI =−3.5 to −1.5]. There was no difference between 5:2 and LCHF ( p = 0.41 for steatosis and 0.78 for weight). Liver stiffness improved in the 5:2 and SoC but not in the LCHF group. The 5:2 diet was associated with reduced LDL levels and was tolerated to a higher degree than LCHF. Conclusions The LCHF and 5:2 diets were more effective in reducing steatosis and body weight in patients with NAFLD than SoC, suggesting dietary advice can be tailored to meet individual preferences. Lay summary For a person with obesity who suffers from fatty liver, weight loss through diet can be an effective treatment to improve the condition of the liver. Many popular diets that are recommended for weight reduction, such as high-fat diets and diets based on intermittent fasting, have not had their effects on the liver directly evaluated. This study shows that both a low-carb high-fat and the 5:2 diet are effective in treating fatty liver caused by obesity. Clinical Trials Registration This study is registered at Clinicaltrials.gov ( NCT03118310 ).
Microbubbles (MBs) are commonly used as injectable ultrasound contrast agent (UCA) in modern ultrasonography. Polymer-shelled UCAs present additional potentialities with respect to marketed lipid-shelled UCAs. They are more robust; that is, they have longer shelf and circulation life, and surface modifications are quite easily accomplished to obtain enhanced targeting and local drug delivery. The next generation of UCAs will be required to support not only ultrasound-based imaging methods but also other complementary diagnostic approaches such as magnetic resonance imaging or computer tomography. This work addresses the features of MBs that could function as contrast agents for both ultrasound and magnetic resonance imaging. The results indicate that the introduction of iron oxide nanoparticles (SPIONs) in the poly(vinyl alcohol) shell or on the external surface of the MBs does not greatly decrease the echogenicity of the host MBs compared with the unmodified one. The presence of SPIONs provides enough magnetic susceptibility to the MBs to accomplish good detectability both in vitro and in vivo. The distribution of SPIONs on the shell and their aggregation state seem to be key factors for the optimization of the transverse relaxation rate.
We have compared the growth and the body composition in children with Prader-Willi syndrome (PWS) with and without growth hormone treatment (recombinant GH 0.1 IU/kg/day) after a 1-y period. Twenty-nine prepubertal children with PWS, with mean body mass index (BMI) SDS of 2.2, and 10 (control) healthy obese children with mean BMI SDS of 5.6, underwent 24-h frequent blood sampling. Both PWS and control obese children had low and similar GH levels (0.7 microg/l +/- 0.4SD). Serum IGF-I levels, however, were significantly lower in children with PWS (-1.5SDS +/- 0.8SD vs -0.2SDS +/- 0.8SD). The 29 PWS children were randomized into 2 groups of 15 and 14 subjects for GH treatment and no treatment, respectively. Height velocity increased from -1.9SDS to + 6.0SDS in the treated group (p < 0.001) and decreased from -0.1SDS to -1.4SDS in the control PWS group during the study year. BMI decreased significantly for the treated group (+3.0SDS to +2.0SDS). Relative fat mass decreased significantly, while fat-free mass increased (p < 0.001) for the treated group. No significant changes were noticed in body composition in the control PWS group. In conclusion, the low spontaneous 24-h GH secretion, regardless of body weight, and the exceptional response to growth hormone treatment together with the finding of low IGF-I levels suggest that growth hormone deficiency is a common feature of PWS, as a result of hypothalamic dysfunction. Treatment with growth hormone is beneficial for the majority of PWS children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.