A numerical framework for finding and stabilizing periodic trajectories of underactuated mechanical systems with impacts is presented. By parameterizing a trajectory by a set of synchronization functions, whose parameters we search for, the dynamical constraints arising due to underactuation can be reduced to a single equation on integral form. This allows for the discretization of the planning problem into a parametric nonlinear programming problem by Gauss-Legendre quadratures. A convenient set of candidates for transverse coordinates are then introduced. The origin of these coordinates correspond to the target motion, along which their dynamics can be analytically linearized. This allows for the design of an orbitally stabilizing feedback controller, which is also applicable for degrees of underactuation higher than one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.