We present a conceptual study on the realization of functional and easily scalable all-optical NOT, AND and NAND logic gates using bandgap solitons in coupled photonic crystal waveguides. The underlying structure consists of a planar air-hole type photonic crystal with a hexagonal lattice of air holes in crystalline silicon (c-Si) as the nonlinear background material. The remaining logical operations can be performed using combinations of these three logic gates. A unique feature of the proposed working scheme is that it operates in the true time-domain, enabling temporal solitons to maintain a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized, paving the way to multiple-input all-optical logic gates for ultrafast full-optical digital signal processing. In the suggested setup, there is no need to amplify the output signal after each operation, which can be directly used as a new input signal for another logical operation. The feasibility and efficiency of the proposed logic gates as well as their scalability is demonstrated using our original rigorous theoretical formalism together with full-wave computational electromagnetics.
This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.