This study aimed to examine the effects of sex (males vs. females) and sex hormones (menstrual cycle phases in women) on sympathetic responsiveness to severe chemoreflex activation in young, healthy individuals. Muscle sympathetic nerve activity (MSNA) was measured at baseline and during rebreathing followed by a maximal end-inspiratory apnea. In women, baseline MSNA was greater in the midluteal (ML) than early-follicular (EF) phase of the menstrual cycle. Baseline MSNA burst incidence was greater in men than women, while burst frequency and total MSNA were similar between men and women only in the ML phase. Chemoreflex activation evoked graded increases in MSNA burst frequency, amplitude, and total activity in all participants. In women, this sympathoexcitation was greater in the EF than ML phase. The sympathoexcitatory response to chemoreflex stimulation of the EF phase in women was also greater than in men. Nonetheless, changes in total peripheral resistance were similar between sexes and menstrual cycle phases. This indicates that neurovascular transduction was attenuated during the EF phase during chemoreflex activation, thereby offsetting the exaggerated sympathoexcitation. Chemoreflex-induced increases in mean arterial pressure were similar across sexes and menstrual cycle phases. During acute chemoreflex stimulation, reduced neurovascular transduction could provide a mechanism by which apnea-associated morbidity might be attenuated in women relative to men.
Hormone fluctuations in women may influence muscle sympathetic nerve activity (MSNA) in a manner dependent on the severity of the sympathoexcitatory stimulus. This study examined MSNA patterns at rest and during chemoreflex stimulation in low- (LH) vs. high-hormone (HH) phases of contraceptive use in healthy young women (n = 7). We tested the hypothesis that MSNA would be greater in the HH phase at baseline and in response to chemoreflex stimulation. MSNA recordings were obtained through microneurography in LH and HH at baseline, during rebreathing causing progressive hypoxia and hypercapnia, and during a hypercapnic-hypoxic end-inspiratory apnea. Baseline MSNA burst incidence (P = 0.03) and burst frequency (P = 0.02) were greater in the HH phase, while MSNA burst amplitude distributions and hemodynamic measures were similar between phases. Rebreathing elicited increases in all MSNA characteristics from baseline (P < 0.05), but was not associated with hormone phase-dependent changes to MSNA patterns. Apnea data were considered in two halves, both of which caused large increases in all MSNA variables from baseline in each hormone phase (P < 0.01). Increases in burst incidence and frequency were greater in LH during the first half of the apnea (P = 0.03 and P = 0.02, respectively), while increases in burst amplitude and total MSNA were greater in LH during the second half of the apnea (P < 0.05). These results indicate that change in hormone phase brought on through use of hormonal contraceptives influences MSNA patterns such that baseline MSNA is greater in the HH phase, but responses to severe chemoreflex stimulation are greater in the LH phase.
We tested the hypothesis that sympathetic responses to baroreceptor unloading may be affected by circulating sex hormones. During lower body negative pressure at -30, -60, and -80 mmHg, muscle sympathetic nerve activity (MSNA), heart rate, and blood pressure were recorded in women who were taking (n = 8) or not taking (n = 9) hormonal contraceptives. All women were tested twice, once during the low-hormone phase (i.e., the early follicular phase of the menstrual cycle and the placebo phase of hormonal contraceptive use), and again during the high-hormone phase (i.e., the midluteal phase of the menstrual cycle and active phase of contraceptive use). During baroreceptor unloading, the reductions in stroke volume and resultant increases in MSNA and total peripheral resistance were greater in high-hormone than low-hormone phases in both groups. When normalized to the fall in stroke volume, increases in MSNA were no longer different between hormone phases. While stroke volume and sympathetic responses were similar between women taking and not taking hormonal contraceptives, mean arterial pressure was maintained during baroreceptor unloading in women not taking hormonal contraceptives but not in women using hormonal contraceptives. These data suggest that differences in sympathetic activation between hormone phases, as elicited by lower body negative pressure, are the result of hormonally mediated changes in the hemodynamic consequences of negative pressure, rather than centrally driven alterations to sympathetic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.