Previous studies using echocardiography in healthy subjects have reported conflicting data regarding the percentage of the stroke volume (SV) of the left ventricle (LV) resulting from longitudinal and radial function, respectively. Therefore, the aim was to quantify the percentage of SV explained by longitudinal atrioventricular plane displacement (AVPD) in controls, athletes, and patients with decreased LV function due to dilated cardiomyopathy (DCM). Twelve healthy subjects, 12 elite triathletes, and 12 patients with DCM and ejection fraction below 30% were examined by cine magnetic resonance imaging. AVPD and SV were measured in long- and short-axis images, respectively. The percentage of the SV explained by longitudinal function (SV(AVPD%)) was calculated as the mean epicardial area of the largest short-axis slices in end diastole multiplied by the AVPD and divided by the SV. SV was higher in athletes [140 +/- 4 ml (mean +/- SE), P = 0.009] and lower in patients (72 +/- 7 ml, P < 0.001) when compared with controls (116 +/- 6 ml). AVPD was similar in athletes (17 +/- 1 mm, P = 0.45) and lower in patients (7 +/- 1 mm, P < 0.001) when compared with controls (16 +/- 0 mm). SV(AVPD%) was similar both in athletes (57 +/- 2%, P = 0.51) and in patients (67 +/- 4%, P = 0.24) when compared with controls (60 +/- 2%). In conclusion, longitudinal AVPD is the primary contributor to LV pumping and accounts for approximately 60% of the SV. Although AVPD is less than half in patients with DCM when compared with controls and athletes, the contribution of AVPD to LV function is maintained, which can be explained by the larger short-axis area in DCM.
BackgroundLong term endurance training is known to increase peak oxygen uptake () and induce morphological changes of the heart such as increased left ventricular mass (LVM). However, the relationship between and the total heart volume (THV), considering both the left and right ventricular dimensions in both males and females, is not completely described. Therefore, the aim of this study was to test the hypothesis that THV is an independent predictor of and to determine if the left and right ventricles enlarge in the same order of magnitude in males and females with a presumed wide range of THV.Methods and ResultsThe study population consisted of 131 subjects of whom 71 were athletes (30 female) and 60 healthy controls (20 female). All subjects underwent cardiovascular MR and maximal incremental exercise test. Total heart volume, LVM and left- and right ventricular end-diastolic volumes (LVEDV, RVEDV) were calculated from short-axis images. was significantly correlated to THV, LVM, LVEDV and RVEDV in both males and females. Multivariable analysis showed that THV was a strong, independent predictor of (R2 = 0.74, p < 0.001). As LVEDV increased, RVEDV increased in the same order of magnitude in both males and females (R2 = 0.87, p < 0.001).ConclusionTotal heart volume is a strong, independent predictor of maximal work capacity for both males and females. Long term endurance training is associated with a physiologically enlarged heart with a balance between the left and right ventricular dimensions in both genders.
BackgroundAn early sign of heart failure (HF) is a decreased cardiac reserve or inability to adequately increase cardiac output during exercise. Under normal circumstances maximal cardiac output is closely related to peak oxygen uptake (VO2peak) which has previously been shown to be closely related to total heart volume (THV). Thus, the aim of this study was to derive a VO2peak/THV ratio and to test the hypothesis that this ratio can be used to distinguish patients with HF from healthy volunteers and endurance athletes. Thirty-one patients with HF of different etiologies were retrospectively included and 131 control subjects (60 healthy volunteers and 71 athletes) were prospectively enrolled. Peak oxygen uptake was determined by maximal exercise test and THV was determined by cardiovascular magnetic resonance. The VO2peak/THV ratio was then derived and tested.ResultsPeak oxygen uptake was strongly correlated to THV (r2 = 0.74, p < 0.001) in the control subjects, but not for the patients (r2 = 0.0002, p = 0.95). The VO2peak/THV ratio differed significantly between control subjects and patients, even in patients with normal ejection fraction and after normalizing for hemoglobin levels (p < 0.001). In a multivariate analysis the VO2peak/THV ratio was the only independent predictor of presence of HF (p < 0.001).ConclusionsThe VO2peak/THV ratio can be used to distinguish patients with clinically diagnosed HF from healthy volunteers and athletes, even in patients with preserved systolic left ventricular function and after normalizing for hemoglobin levels.
This study has shown two different sequences of the respiratory indices Dx, Px and Pq in subjects of varying working capacity. The individual differences in the order of occurrence of Px and Pq during the exercise test are most likely caused by different abilities to metabolize fat at high workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.