Highlights d Presynaptic active zone plasticity as a molecular signature of sleep loss d Core active zone scaffold protein BRP drives presynaptic upscaling d Global BRP promotes sleep and arousal threshold in a dosage-dependent manner d BRP-driven synaptic plasticity-encoded sleep need impairs learning via R2 neurons
Assembly and maturation of synapses at the Drosophila neuromuscular junction
(NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by
the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold
protein spinophilin binds to the C-terminal portion of neurexin and is needed to
limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of
presynaptic spinophilin results in the formation of excess, but atypically small
active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at
spinophilin mutant NMJs, and removal of single copies of the
neurexin-1, Syd-1 or neuroligin-1 genes suppresses the
spinophilin-active zone phenotype. Evoked transmission is strongly reduced at
spinophilin terminals, owing to a severely reduced release probability at
individual active zones. We conclude that presynaptic spinophilin fine-tunes
neurexin/neuroligin signalling to control active zone number and functionality,
thereby optimizing them for action potential-induced exocytosis.
At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a “hinge” in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs’ conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.