Background:The catabolite control protein A (CcpA) plays an important role in Staphylococcus aureus virulence, biofilm formation, and central metabolism. Results: Phosphorylation of CcpA negatively affects its DNA binding activity and thus the expression of its target genes. Conclusion: CcpA activity is modulated by Stk1 phosphorylation. Significance: This study highlights that phosphorylation of CcpA represents a novel regulatory control mechanism for this major transcriptional factor.
Staphylococcus epidermidis is an opportunistic bacterium whose infections often involve the formation of a biofilm on implanted biomaterials. In S. epidermidis, the exopolysaccharide facilitating bacterial adherence in a biofilm is polysaccharide intercellular adhesin (PIA), whose synthesis requires the enzymes encoded within the intercellular adhesin operon (icaADBC). In vitro, the formation of S. epidermidis biofilms is enhanced by conditions that repress tricarboxylic acid (TCA) cycle activity, such as growth in a medium containing glucose. In many Gram-positive bacteria, repression of TCA cycle genes in response to glucose is accomplished by catabolite control protein A (CcpA). CcpA is a member of the GalR-LacI repressor family that mediates carbon catabolite repression, leading us to hypothesize that catabolite control of S. epidermidis biofilm formation is indirectly regulated by CcpA-dependent repression of the TCA cycle. To test this hypothesis, ccpA deletion mutants were constructed in strain 1457 and 1457-acnA and the effects on TCA cycle activity, biofilm formation and virulence were assessed. As anticipated, deletion of ccpA derepressed TCA cycle activity and inhibited biofilm formation; however, ccpA deletion had only a modest effect on icaADBC transcription. Surprisingly, deletion of ccpA in strain 1457-acnA, a strain whose TCA cycle is inactive and where icaADBC transcription is derepressed, strongly inhibited icaADBC transcription. These observations demonstrate that CcpA is a positive effector of biofilm formation and icaADBC transcription and a repressor of TCA cycle activity.
Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm–substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces.
Background:The TCA cycle is a central metabolic pathway that facilitates the adaption of bacteria to a nutrient-limited environment. Results: Inactivation of CcpE in Staphylococcus aureus resulted in a decreased transcription of the aconitase encoding gene citB, and reduced TCA cycle activity. Conclusion: CcpE affects the TCA cycle via direct transcriptional control of citB. Significance: This is the first positive regulator of TCA cycle activity identified in this pathogen.
Background: Carbon metabolism and virulence are often linked in pathogenic bacteria. Results: Deletion of the catabolite control protein E (CcpE) affects the expression of virulence factors and pathogenicity of Staphylococcus aureus. Conclusion: Our data suggest that CcpE acts as an attenuator of virulence in S. aureus. Significance: CcpE may serve to link S. aureus nutritional status to virulence determinant biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.