Abstract. Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four types are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help reveal the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers.Based on phylogenetic, molecular-clock, lineage-throughtime plot, and diversification-rate analyses we found that this potentially monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) deepdrilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the constant diversification rate observed in endemic gastropods has been caused by two factors: (i) a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii) a probably high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology.The current study not only contributes to one of the overall goals of the SCOPSCO deep-drilling program -inferring the driving forces for biotic evolution in Lake Ohrid. It might also enhance our understanding of how ecosystem resilience, in general, may promote relatively constant diversification rates in isolated ecosystems. However, we encourage future studies testing hypotheses about the lack of catastrophic events in Lake Ohrid. These studies should be based on high-resolution data for the entire geological history of the lake, and they should potentially involve information from the sediment fossil record, not only for gastropods but also for other groups with a high share of endemic taxa.
The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems.
Ancient lakes are hotspots of biodiversity, often harboring a large number of endemic species that make them prime model systems for evolutionary biologists. Besides such well-recognized ancient or long-lived lakes as Baikal, Biwa, Ohrid, and Tanganyika, there are other potentially old and biodiverse lakes in the world with poorly specified ages and under-studied faunas. We here report on the mollusc fauna of one such lake, Lake Trichonis in continental Greece. This graben lake is situated in a highly tectonized area, characterized by karst features and probably of middle to late Pliocene origin. Lake Trichonis is deep, oligotrophic, and rich in such Specific habitat types as macrophyte meadows, rocky shores and sublacustrine spring systems. Moreover, it is a hotspot of freshwater biodiversity in Greece, particularly in molluscs.After reviewing newly collected material and the published mollusc records, we found that at least 33 mollusc species occur in Lake Trichonis, with 24 gastropod and 9 bivalve species currently being recognized. This is 24% of the total freshwater mollusc diversity of Greece; 21% of the gastropods (five species) are endemic to Lake Trichonis. If the whole Trichonis Basin is considered, which also includes neighboring Lake Lysimachia, eight species (33%) of the total fauna appear to be endemic. Taking lake surface areas into account, the index of gastropod endemism of 0.442 (log Nendemic species/109 Asurface area) for the Lake Trichonis Basin resembles on a world-wide scale values known for Lake Baikal, Russia, and Lake Biwa, Japan, and is only exceeded by Lake Ohrid, Macedonia/Albania, and ancient lakes of Sulawesi, Indonesia.Despite the limited knowledge about the lake's evolutionary history, the suggested age of origin, the palaeogeographical characteristics, and the potential timing of phylogenetic events reviewed here support the presumed status of Lake Trichonis as an ancient lake.From a conservational standpoint, more research, management and conservation efforts are necessary because ancient lakes are among the most vulnerable and threatened ecosystems on earth. Effects of human-induced environmental change are already noticeable in Lake Trichonis. Recognition of Lake Trichonis as a unique system with an unusually high biodiversity may help promoting conservation efforts.
<p><strong>Abstract.</strong> This study reviews and synthesises existing information generated within the SCOPSCO ("Scientific Collaboration on Past Speciation Conditions in Lake Ohrid") deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the drivers of biodiversity and endemism. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3&#8201;Myr ago. The lake history is recorded in a 584&#8201;m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 50 tephra and crypto-tephra horizons have been found in the upper 460&#8201;m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8&#8201;m represent the last 637&#8201;kyr. The multi-proxy dataset covering these 637&#8201;kyr indicates long-term variability, with a change from cooler and wetter to drier and warmer glacial and interglacial periods around 300&#8201;ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard-Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refugial area for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637&#8201;kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.