Reinforcement learning has been successfully used to solve difficult tasks in complex unknown environments. However, these methods typically do not provide any safety guarantees during the learning process. This is particularly problematic, since reinforcement learning agents actively explore their environment. This prevents their use in safety-critical, real-world applications. In this paper, we present a learning-based model predictive control scheme that provides high-probability safety guarantees throughout the learning process. Based on a reliable statistical model, we construct provably accurate confidence intervals on predicted trajectories. Unlike previous approaches, we allow for input-dependent uncertainties. Based on these reliable predictions, we guarantee that trajectories satisfy safety constraints. Moreover, we use a terminal set constraint to recursively guarantee the existence of safe control actions at every iteration. We evaluate the resulting algorithm to safely explore the dynamics of an inverted pendulum and to solve a reinforcement learning task on a cart-pole system with safety constraints.
Abstract. The throttle valve is a technical device used for regulating a fluid or a gas flow. Throttle valve control is a challenging task, due to its complex dynamics and demanding constraints for the controller. Using state-of-the-art throttle valve control, such as model-free PID controllers, time-consuming and manual adjusting of the controller is necessary. In this paper, we investigate how reinforcement learning (RL) can help to alleviate the effort of manual controller design by automatically learning a control policy from experiences. In order to obtain a valid control policy for the throttle valve, several constraints need to be addressed, such as no-overshoot. Furthermore, the learned controller must be able to follow given desired trajectories, while moving the valve from any start to any goal position and, thus, multi-targets policy learning needs to be considered for RL. In this study, we employ a policy search RL approach, Pilco [2], to learn a throttle valve control policy. We adapt the Pilco algorithm, while taking into account the practical requirements and constraints for the controller. For evaluation, we employ the resulting algorithm to solve several control tasks in simulation, as well as on a physical throttle valve system. The results show that policy search RL is able to learn a consistent control policy for complex, real-world systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.