ITSG‐Grace2018 is a new series of GRACE‐only gravity field solutions based on reprocessed GRACE observation data (L1B RL03) and the latest atmosphere and ocean dealiasing product (AOD1B RL06). It includes unconstrained monthly and constrained daily solutions, as well as a high‐resolution static gravity field. Compared to the previous ITSG release, we implemented a number of improvements within the processing chain and use updated background models. In an effort to better model all known error sources, we propagate synthetic orientation uncertainties of the star camera assembly to the antenna offset correction for intersatellite ranging observations. This enables the disentanglement of the stationary noise of the K‐Band system and the nonstationary noise of the antenna offset correction. We further incorporated uncertainties of the atmosphere and ocean dealiasing product to reduce temporal aliasing effects. To mitigate errors in the applied ocean tide model, we used constrained GRACE estimates of selected tidal constituents as an additional background model. Variability over quiet ocean areas suggests a 27% to 46% lower noise level compared to the current spherical harmonic solutions of the official processing centers (300 km Gaussian filter applied). To ensure that the low noise floor is not accompanied by signal loss, we examined drainage basin averages, which showed consistent amplitudes with the official GRACE time series. These evaluations lead to the conclusion that ITSG‐Grace2018 is a state‐of‐the‐art GRACE time series which exhibits an excellent signal‐to‐noise ratio.
[1] The satellite-only gravity field model GOCO01S is a combination solution based on 61 days of GOCE gravity gradient data, and 7 years of GRACE GPS and K-band range rate data, resolved up to degree/order 224 of a harmonic series expansion. The combination was performed consistently by addition of full normal equations and stochastic modeling of GOCE and GRACE observations. The model has been validated against external global gravity models and regional GPS/leveling observations. While low to medium degrees are mainly determined by GRACE, significant contributions by the new measurement type of GOCE gradients can already be observed at degree 100. Beyond degree 150, GOCE becomes the dominant contributor. Correspondingly, with GOCO01S a global gravity field model with high performance for the complete spectral range up to degree/order 224 is now available. This new gravity model will be beneficial for many applications in geophysics, oceanography, and geodesy. Citation: Pail, R., et al. (2010), Combined satellite gravity field model GOCO01S
This article provides a survey on modern methods of regional gravity field modeling on the sphere. Starting with the classical theory of spherical harmonics, we outline the transition towards space-localizing methods such as spherical splines and wavelets. Special emphasis is given to the relations among these methods, which all involve radial base functions. Moreover, we provide extensive applications of these methods and numerical results from real space-borne data of recent satellite gravity missions, namely the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). We also derive high-resolution gravity field models by effectively combining space-borne and surface measurements using a new weighted level-combination concept. In addition, we outline and apply a strategy for constructing spatiotemporal fields from regional data sets spanning different observation periods.
[1] Different GRACE data analysis centers provide temporal variations of the Earth's gravity field as monthly, 10-daily or weekly mean fields. These solutions are derived independently for each time span, i.e., no correlation between the analyzed batches is considered. Following this procedure, an increase in temporal resolution is accompanied by a loss in accuracy. To avoid this problem, a new approach is followed, which takes into account the temporal correlations of the gravity field variations thus enabling the enhancement of the temporal resolution up to daily snapshots. The GRACE Level-1B (L1B) instrument data processing is performed within the framework of a Kalman filter estimation procedure, where the information about the temporal correlation patterns can be derived from geophysical models. The WaterGAP hydrological model was analyzed to derive the required information in terms of an empirical auto-covariance function. First results are presented and compared to GFZ-RL04 monthly and weekly gravity field solutions. Citation: Kurtenbach, E., T. Mayer-Gürr, and A. Eicker (2009), Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering, Geophys. Res. Lett., 36, L17102,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.