Increased rates of inbreeding are one side effect of breeding programmes designed to give genetic progress for traits of economic importance in livestock. Inbreeding leads to inbreeding depression for traits showing dominance, and will ultimately lead to a decrease in genetic variance within populations. Here we review theoretical and experimental literature from animal breeding, evolutionary biology and conservation genetics on the consequences of inbreeding in terms of trait means and genetic and environmental variance components. The genetic background for these effects is presented and the experimental literature interpreted in relation to them. Furthermore, purging of deleterious alleles and the variable nature of effects of inbreeding on populations are discussed. Based on the literature, we conclude that inbreeding in animal breeding must be controlled very effi ciently to maintain long-term sustainable livestock production in the future. The tools to do this effi ciently exist, and much can be learnt on inbreeding from the literature in fi elds only distantly related to animal breeding. ), and in the evolution of behavioural mechanisms for avoiding mating between close relatives in animals (Pusey and Wolf, 1996). These adaptations illustrate the importance of inbreeding as an evolutionary force.
The effect of environmental stress on the magnitude of inbreeding depression has a long history of intensive study. Inbreeding-stress interactions are of great importance to the viability of populations of conservation concern and have numerous evolutionary ramifications. However, such interactions are controversial. Several meta-analyses over the last decade, combined with omic studies, have provided considerable insight into the generality of inbreeding-stress interactions, its physiological basis, and have provided the foundation for future studies. In this review, we examine the genetic and physiological mechanisms proposed to explain why inbreeding-stress interactions occur. We specifically examine whether the increase in inbreeding depression with increasing stress could be due to a concomitant increase in phenotypic variation, using a larger data set than any previous study. Phenotypic variation does usually increase with stress, and this increase can explain some of the inbreeding-stress interaction, but it cannot explain all of it. Overall, research suggests that inbreeding-stress interactions can occur via multiple independent channels, though the relative contribution of each of the mechanisms is unknown. To better understand the causes and consequences of inbreeding-2 stress interactions in natural populations, future research should focus on elucidating the genetic architecture of such interactions and quantifying naturally occurring levels of stress in the wild.
The thermal biology of ectotherms is often used to infer species' responses to changes in temperature. It is often proposed that temperate species are more cold-tolerant, less heat-tolerant, more plastic, have broader thermal performance curves (TPCs) and lower optimal temperatures when compared to tropical species. However, relatively little empirical work has provided support for this using large interspecific studies. In the present study, we measure thermal tolerance limits and thermal performance in 22 species of Drosophila that developed under common conditions. Specifically, we measure thermal tolerance (CT min and CT max ) as well as the fitness components viability, developmental speed and fecundity at seven temperatures to construct TPCs for each of these species. For 10 of the species, we also measure thermal tolerance and thermal performance following developmental acclimation to three additional temperatures. Using these data, we test several fundamental hypotheses about the evolution and plasticity of heat and cold resistance and thermal performance. We find that cold tolerance (CT min ) varied between the species according to the environmental temperature in the habitat from which they originated. These data support the idea that the evolution of cold tolerance has allowed species to persist in colder environments. However, contrary to expectation, we find that optimal temperature ( T opt ) and the breadth of thermal performance ( T breadth ) are similar in temperate, widespread and tropical species and we also find that the plasticity of TPCs was constrained. We suggest that the temperature range for optimal thermal performance is either fixed or under selection by the more similar temperatures that prevail during growing seasons. As a consequence, we find that T opt and T breadth are of limited value for predicting past, present and future distributions of species. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
About 50 y ago, Crow and Kimura [An Introduction to Population Genetics Theory (1970)] and Ohta and Kimura [Genet. Res. 22, 201–204 (1973)] laid the foundations of conservation genetics by predicting the relationship between population size and genetic marker diversity. This work sparked an enormous research effort investigating the importance of population dynamics, in particular small population size, for population mean performance, population viability, and evolutionary potential. In light of a recent perspective [J. C. Teixeira, C. D. Huber, Proc. Natl. Acad. Sci. U.S.A. 118, 10 (2021)] that challenges some fundamental assumptions in conservation genetics, it is timely to summarize what the field has achieved, what robust patterns have emerged, and worthwhile future research directions. We consider theory and methodological breakthroughs that have helped management, and we outline some fundamental and applied challenges for conservation genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.