Perceiving others in pain generally leads to empathic concern, consisting of both emotional and cognitive processes. Empathy deficits have been considered as an element contributing to social difficulties in individuals with autism spectrum disorders (ASD). Here, we used functional magnetic resonance imaging and short video clips of facial expressions of people experiencing pain to examine the neural substrates underlying the spontaneous empathic response to pain in autism. Thirty-eight adolescents and adults of normal intelligence diagnosed with ASD and 35 matched controls participated in the study. In contrast to general assumptions, we found no significant differences in brain activation between ASD individuals and controls during the perception of pain experienced by others. Both groups showed similar levels of activation in areas associated with pain sharing, evidencing the presence of emotional empathy and emotional contagion in participants with autism as well as in controls. Differences between groups could be observed at a more liberal statistical threshold, and revealed increased activations in areas involved in cognitive reappraisal in ASD participants compared with controls. Scores of emotional empathy were positively correlated with brain activation in areas involved in embodiment of pain in ASD group only. Our findings show that simulation mechanisms involved in emotional empathy are preserved in high-functioning individuals with autism, and suggest that increased reappraisal may have a role in their apparent lack of caring behavior.
Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.
Clinical observations have shown that GABA-acting benzodiazepines exert paradoxical excitatory effects in autism, suggesting elevated intracellular chloride (Cl-)i and excitatory action of GABA. In a previous double-blind randomized study, we have shown that the diuretic NKCC1 chloride importer antagonist bumetanide, that decreases (Cl-)i and reinforces GABAergic inhibition, reduces the severity of autism symptoms. Here, we report results from an open-label trial pilot study in which we used functional magnetic resonance imaging and neuropsychological testing to determine the effects of 10 months bumetanide treatment in adolescents and young adults with autism. We show that bumetanide treatment improves emotion recognition and enhances the activation of brain regions involved in social and emotional perception during the perception of emotional faces. The improvement of emotion processing by bumetanide reinforces the usefulness of bumetanide as a promising treatment to improve social interactions in autism.
Intuitive grasping of the meaning of subtle social cues is particularly affected in autism spectrum disorders (ASD). Despite their relevance in social communication, the effect of averted gaze in fearful faces in conveying a signal of environmental threat has not been investigated using real face stimuli in adults with ASD. Here, using functional MRI, we show that briefly presented fearful faces with averted gaze, previously shown to be a strong communicative signal of environmental danger, produce different patterns of brain activation than fearful faces with direct gaze in a group of 26 normally intelligent adults with ASD compared with 26 matched controls. While implicit cue of threat produces brain activation in attention, emotion processing and mental state attribution networks in controls, this effect is absent in individuals with ASD. Instead, individuals with ASD show activation in the subcortical face-processing system in response to direct eye contact. An effect of differences in looking behavior was excluded in a separate eye tracking experiment. Our data suggest that individuals with ASD are more sensitive to direct eye contact than to social signals of danger conveyed by averted fearful gaze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.